Bimetric 3+1 toolkit for spherical symmetry
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Bibliographic References
[1]

Miguel Alcubierre and Jose A. Gonzalez. Regularization of spherically symmetric evolution codes in numerical relativity. Comput. Phys. Commun., 167:76–84, 2005.

[2]

Miguel Alcubierre and Martha D. Mendez. Formulations of the 3+1 evolution equations in curvilinear coordinates. Gen. Rel. Grav., 43:2769–2806, 2011.

[3]

Baumgarte and Shapiro. Numerical Relativity: Solving Einstein's Equations on the Computer. Cambridge University Press, 2010.

[4]

Baumgarte, Montero, Cordero-Carrión, and Müller. Numerical relativity in spherical polar coordinates: Evolution calculations with the BSSN formulation. Phys. Rev. D, 87:044026, Feb 2013.

[5]

Isabel Cordero-Carrión and Pablo Cerda-Duran. Partially implicit Runge-Kutta methods for wave-like equations in spherical-type coordinates. 2012.

[6]

Mewes et al. Numerical relativity in spherical coordinates with the Einstein Toolkit. Phys. Rev., D97(8):084059, 2018.

[7]

Mikica Kocic. Geometric mean of bimetric spacetimes. 2018.

[8]

Nakamura, T. and Maeda, M and Miyama, S. and Sasaki, M. General Relativistic Collapse of an Axially Symmetric Star. I The Formulation and the Initial Value Equations. Progress of Theoretical Physics, 63(4):1229–1244, 1980.

[9]

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, 2007.

[10]

Ian Ruchlin, Zachariah B. Etienne, and Thomas W. Baumgarte. SENR/NRPy+: Numerical Relativity in Singular Curvilinear Coordinate Systems. Phys. Rev., D97(6):064036, 2018.

[11]

Milton Ruiz, Miguel Alcubierre, and Dario Nunez. Regularization of spherical and axisymmetric evolution codes in numerical relativity. Gen. Rel. Grav., 40:159–182, 2008.

[12]

Masaru Shibata. Numerical Relativity. 100 Years Of General Relativity. World Scientific Publishing Company, 2015.