Bimetric 3+1 toolkit for spherical symmetry
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
maximalSlice.h
Go to the documentation of this file.
00001 /**
00002  *  @file      maximalSlice.h
00003  *  @brief     Maximal slicing algorithm.
00004  *  @author    Mikica Kocic
00005  *  @copyright GNU General Public License (GPLv3).
00006  */
00007 
00008 /////////////////////////////////////////////////////////////////////////////////////////
00009 
00010 /** PP is P(x) in the equation: y''(x) = P(x) y'(x) + Q(x) y(x)
00011  */
00012 #define PP(n) ( -2 / r(m,n) )
00013 
00014 /** QQ is Q(x) in the equation: y''(x) = P(x) y'(x) + Q(x) y(x)
00015  */
00016 #define QQ(n) ( pow2( gK1(m,n) ) + 2 * pow2( gK2(m,n) ) \
00017     + k_g * ( eq_pf_rho(m,n) + eq_pf_J1(m,n) + 2 * eq_pf_J2(m,n) ) )
00018 
00019 #define altQQ(n) ( pow2( gK1(m,n) ) + 2 * pow2( gK2(m,n) ) +  pow2( fK1(m,n) ) + 2 * pow2( fK2(m,n) ) \
00020     + k_g * ( eq_pf_rho(m,n) + eq_pf_J1(m,n) + 2 * eq_pf_J2(m,n) ) )
00021 
00022 /// @todo fixme: Should be  k_g/2 in the above. Removing 1/2, however, speeds up the collapse.
00023 /// @todo fixme: Current implementation uses rho + J of the perfect fluid (should use bimetric).
00024 
00025 /** Finds the maximal slice using a second-order accurate finite difference scheme.
00026  *
00027  *  The maximal slicing involves solving a differential equation:
00028  *  <pre>
00029  *        y''(x) = P(x) y'(x) + Q(x) y(x)   </pre>
00030  *
00031  *  with the Neumann BC on the left `y´(0) = 0`,
00032  *  and the Dirichlet BC on the right `y(r_1) = 1`.
00033  *
00034  *  The solution is found using a linear finite-difference method.
00035  *  The algorithm comprises two major steps:
00036  *
00037  *    - Prepare the band-diagonal linear system corresponding to a discretized DE.
00038  *
00039  *    - Solve the linear system (using Crout's method).
00040  *
00041  *  The coefficients for the discretized DE are generated in the Mathematica notebook:
00042  *  `Maximal slicing, FD method.nb`. The linear system is solved used Bandec.
00043  */
00044 void BimetricEvolve::maximalSlice_2
00045 (
00046     Int m,          //!< The time slice
00047     Int N,          //!< The radial coordinate of the right boundary
00048     Real gAlp_at_N  //!< The right boundary condition
00049     )
00050 {
00051     const Int offset = nGhost - 1;  N = N + 1;
00052     const Real h = delta_r;
00053     MatReal A( N, 3 );
00054     VecReal b( N );
00055 
00056     /////////////////////////////////////////////////////////////////////////////////////
00057 
00058     OMP_parallel_for( Int i = 0; i < N; ++i )
00059     {
00060         A[i][0] = -2         - h * PP( offset + i );
00061         A[i][1] =  4 + 2 * h * h * QQ( offset + i );
00062         A[i][2] = -2         + h * PP( offset + i );
00063         b[i]    =  0;
00064     }
00065 
00066     // Override the default row values
00067 
00068     A[0][0] = 0;
00069     A[0][2] = -4;
00070 
00071     A[N-1][2] = 0;
00072     b[N-1] = gAlp_at_N * ( 2 - h * PP( offset + (N-1) ) ) ;
00073 
00074     /////////////////////////////////////////////////////////////////////////////////////
00075 
00076     VecReal_O x( N );
00077     BandLUDecomposition( A, 1, 1 ).solve( b, x );
00078 
00079     // Retrieve the results from x
00080 
00081     gAlp( m, offset + N ) = gAlp_at_N;
00082 
00083     for( Int i = 0; i < N; ++i ) {
00084         gAlp( m, offset + i ) = x[i];
00085     }
00086 
00087     maximalSlice_PostSteps( m, N );
00088 }
00089 
00090 /** Finds the maximal slice using a fourth-order accurate finite difference scheme.
00091  *  @see maximalSlice_2
00092  */
00093 void BimetricEvolve::maximalSlice_4
00094 (
00095     Int m,          //!< The time slice
00096     Int N,          //!< The radial coordinate of the right boundary
00097     Real gAlp_at_N  //!< The right boundary condition
00098     )
00099 {
00100     const Int offset = nGhost;
00101     const Real h = delta_r;
00102     MatReal A( N, 7 );
00103     VecReal b( N );
00104 
00105     /////////////////////////////////////////////////////////////////////////////////////
00106 
00107     OMP_parallel_for( Int i = 0; i < N; ++i )
00108     {
00109         A[i][0] =   0;
00110         A[i][1] =  -1          - h * PP( offset + i );
00111         A[i][2] =  16      + 8 * h * PP( offset + i );
00112         A[i][3] = -30 - 12 * h * h * QQ( offset + i );
00113         A[i][4] =  16      - 8 * h * PP( offset + i );
00114         A[i][5] =  -1        +   h * PP( offset + i );
00115         A[i][6] =   0;
00116         b[i]    =   0;
00117     }
00118 
00119     // Override the default row values
00120 
00121     Int i = 0;
00122     A[i][1] =   0;
00123     A[i][2] =   0;
00124     A[i][3] = -20 + 10 * h * PP( offset + i ) - 12 * h * h * QQ( offset + i );
00125     A[i][4] =  17 - 15 * h * PP( offset + i );
00126     A[i][5] =   4 +  6 * h * PP( offset + i );
00127     A[i][6] =  -1 -      h * PP( offset + i );
00128 
00129     i = 1;
00130     A[i][1] = 0;
00131     A[i][3] = -31 - h * PP( offset + i ) - 12 * h * h * QQ( offset + i );
00132 
00133     i = N - 2;
00134     A[i][5] = 0;
00135     b[i] = gAlp_at_N * ( 1 - 8 * h * PP( offset + i ) ) ;
00136 
00137     i = N - 1;
00138     A[i][0] =  -1 +      h * PP( offset + i );
00139     A[i][1] =   4 -  6 * h * PP( offset + i );
00140     A[i][2] =   6 + 18 * h * PP( offset + i );
00141     A[i][3] = -20 - 10 * h * PP( offset + i ) - 12 * h * h * QQ( offset + i );
00142     A[i][4] =   0;
00143     A[i][5] =   0;
00144     b[i] = gAlp_at_N * ( -11 + 3 * h * PP( offset + i ) ) ;
00145 
00146     /////////////////////////////////////////////////////////////////////////////////////
00147 
00148     VecReal_O x( N );
00149     BandLUDecomposition( A, 3, 3 ).solve( b, x );
00150 
00151     // Retrieve the results from x
00152 
00153     gAlp( m, offset + N ) = gAlp_at_N;
00154 
00155     for( Int i = 0; i < N; ++i ) {
00156         gAlp( m, offset + i ) = x[i];
00157     }
00158 
00159     maximalSlice_PostSteps( m, N );
00160 }
00161 
00162 /** Finds the maximal slice using a second-order accurate finite difference scheme.
00163  *
00164  *  This is a slightly optimized version where the differential equation is solved
00165  *  using Algorithm 11.3 from Burden & Faires, Numerical Analysis, 2016
00166  *  (found in the section Finite-Difference Methods for Linear Problems on p. 700).
00167  *
00168  *  @see maximalSlice_2
00169  */
00170 void BimetricEvolve::maximalSlice_2opt
00171 (
00172     Int m,          //!< The time slice
00173     Int N,          //!< The radial coordinate of the right boundary
00174     Real gAlp_at_N  //!< The right boundary condition
00175     )
00176 {
00177     const Int offset = nGhost - 1; N = N + 1;
00178     const Real h = delta_r;
00179 
00180     // First, allocate memory used to store the intermediate variables.
00181     //
00182     static Real* workArea = NULL;
00183     static Real *a, *b, *c, *d; // Used in steps 1-3
00184     static Real *l, *u, *z, *w; // Used in steps 4-8
00185     if ( workArea == NULL ) {
00186         size_t chunkSize = nLen + 2 * nGhost;
00187         workArea = new Real[ 8 * chunkSize ];
00188         a = workArea;      b = a + chunkSize; c = b + chunkSize; d = c + chunkSize;
00189         l = d + chunkSize; u = l + chunkSize; z = u + chunkSize; w = z + chunkSize;
00190     }
00191 
00192     // Note: a[] = diagonal, b[] = upper band, c[] = lower band,
00193     //       and d[] is on the right hand side of the equation A x = d
00194 
00195     /////////////////////////////////////////////////////////////////////////////////////
00196     // Prepare the tridiagonal linear system corresponding to DE.
00197 
00198     // Steps 1-3
00199 
00200     OMP_parallel_for( Int i = 0; i < N; ++i )
00201     {
00202         c[i] = -2         - h * PP( offset + i );
00203         a[i] =  4 + 2 * h * h * QQ( offset + i );
00204         b[i] = -2         + h * PP( offset + i );
00205         d[i] =  0;
00206     }
00207 
00208     c[0] =  0;
00209     b[0] = -4;  // Set by Neumann BC: w{-1} = w_{1}
00210 
00211     b[N-1] =   0;
00212     d[N-1] = ( 2 - h * PP( offset + N-1 ) ) * gAlp_at_N;
00213 
00214     /////////////////////////////////////////////////////////////////////////////////////
00215     // Solve the linear system using Crout's factorization.
00216 
00217     // Step 4
00218     //
00219     l[0] = a[0];
00220     u[0] = b[0] / a[0];
00221     z[0] = d[0] / l[0];
00222 
00223     // Step 5
00224     //
00225     for( Int i = 0; i < N - 1; ++i )
00226     {
00227         l[i] = a[i] - c[i] * u[i-1];
00228         u[i] = b[i] / l[i];
00229         z[i] = ( d[i] - c[i] * z[i-1] ) / l[i];
00230     }
00231 
00232     // Step 6-7
00233     //
00234     Int i = N - 1;
00235     l[i] = a[i] - c[i] * u[i-1];
00236     gAlp( m, offset + i ) = w[i] = z[i] = ( d[i] - c[i] * z[i-1] ) / l[i];
00237 
00238     // Step 8
00239     //
00240     for( Int i = N - 2; i >= 1; --i ) {
00241         gAlp( m, offset + i ) = w[i] = z[i] - u[i] * w[i+1];
00242     }
00243 
00244     gAlp( m, offset + N ) = w[N] = gAlp_at_N;
00245 
00246     maximalSlice_PostSteps( m, N );
00247 }
00248 
00249 /** Additional steps for gAlp and gDAlp (like fixing boundary conditions.)
00250  */
00251 void BimetricEvolve::maximalSlice_PostSteps( Int m, Int N )
00252 {
00253     // Fix the ghost cells on the left (using parity BC)
00254     //
00255     for( Int i = 0; i < nGhost; ++i ) {
00256         gAlp( m, nGhost - 1 - i  ) = gAlp( m, nGhost + i );
00257     }
00258 
00259     // Determine cells on the right by solving the differential equation.
00260     //
00261     Real h = delta_r;
00262     Int overlap = 10;
00263     for( Int n = nGhost + N - overlap; n < nGhost + nLen + nGhost - 1; ++n )
00264     {
00265         gAlp( m, n+1 ) =
00266             ( ( 4  + 2 * h * h * QQ(n) ) * gAlp(m,n) - ( 2 + h * PP(n) ) * gAlp(m,n-1) )
00267             / ( 2 - h * PP(n) );
00268     }
00269 
00270     #if 0
00271     // Alternative smoothing:
00272     //
00273     OMP_parallel_for( Int n = nGhost; n < nTotal - CFDS_ORDER/2; ++n ) {
00274         gAlp_r ( m, n ) = GF_r( gAlp,  m, n );
00275     }
00276     smoothenGF( m, fld::gAlp_r, fld::gdbg, fld::gAlp_r, -1 );
00277     OMP_parallel_for( Int n = nGhost; n < nTotal - CFDS_ORDER/2; ++n ) {
00278         gDAlp(m,n) = gAlp_r(m,n) / gAlp(m,n);
00279     }
00280     smoothenGF( m, fld::gDAlp, fld::fdbg, fld::gDAlp, -1 );
00281     return;
00282     #endif
00283 
00284     // Calculate gDAlp
00285     //
00286     OMP_parallel_for( Int n = nGhost; n < nTotal - CFDS_ORDER/2; ++n )
00287     {
00288         gAlp_r ( m, n ) = GF_r( gAlp,  m, n );
00289         /// @todo fixme:  add +TINY in the case if zero
00290         gDAlp(m,n) = gAlp_r(m,n) / gAlp(m,n);
00291     }
00292 
00293     // The accuracy is very low at low r. Assume that a few first cells are linear,
00294     // then apply a six-point cubic spline to smooth the region around r = 0.
00295     //
00296     cubicSplineShmooth( m, fld::gDAlp, lin2n, cub2n );
00297 
00298     // Fix the left boundary using parity BC
00299     //
00300     for( Int i = 0; i < nGhost; ++i ) {
00301         gDAlp( m, nGhost - 1 - i  ) = - gDAlp( m, nGhost + i );
00302     }
00303 }
00304 
00305 #undef PP
00306 #undef QQ