Schrodinger Picture:

e State kets are time-dependent (governed by the Hamiltonian).

e Operators are stationary.
e DBase kets are stationary.
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Schrodinger Equations of Motion (I)
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Schrodinger Equations of Motion (II)
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Time-evolution (unitary) operator:
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Properties of U(t,ty):

The most general solution to EoM:
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U(t, to)TU(t 1)) = 1
U(ts, 1) = u(tl,tQ)T
U(ts, ta)U(t2, t1) = U(ts, 1)

Solution when 0H/Jt = 0:
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Dyson series:

Solution to Schrodinger’s EoM for any H (t) where H(t')
and H(t") do not commute at different times ¢’ # ¢”.

Rewrite (1) as the integral equation,
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Then reqursively expand U(t1,t) in the integrand,
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After introducing the time-ordering, we get,
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or in the condensed form, (2).
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The S-matrix, definition:

S = Ui (00, —00)
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Expansion:

S = Z S™  where S™

is n-th order:
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Covariance between S.P. and H.P.

Heisenberg Picture:

The Schrodinger, Heisenberg and Interaction Pictures in QFT (FK8017 HT15)

e State kets are stationary.
e Operators are time-dependent (governed by the Hamiltonian).
e Base kets are time-dependent (evolve in reverse wrt observables).
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For operators:
AT =UT(t, 1) A5 U(t, 1)
AR(ty) = A5
The last holds also for the Hamiltonian H:
HY(t) =UT(t,to) H® U(t, to)
HY(ty) = H®
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Heisenberg EoM for A'(t) using Hy
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In the Interaction Picture, the fields ¢' retain
the properties of the free fields. (The fields
@' are the solutions to the free-theory EoM
for Hy obtained from L.)

We postulate that the canonical commuata-
tion relations are valid also for the interact-
ing field operators with no gradient couplings
that modify the conjugate field (i.e., when
the interaction Lagrangian L;,; does not con-
tain derivatives wrt fields).

At any fixed time, the full-interacting creator
and annihilation operators satisfy the same
algebra as in the free-theory (due to transla-
tion invariance of the Fock space).
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Heisenberg Equations of Motion
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Example of states (in Fock space):

) = %(Wk))” 0"

Ut to) = exp( — i (t —to)) If 9H/0t = 0 then H" = 0 = M.
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Schrodinger
Picture Time-evolution operator
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Split
H = HO + Hing
Z/{(t, tO) = Z/{O(ta tO) Mint(ta tO)

Interaction
Picture
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Covariance between S.P., I.P. and H.P.

p
For states:
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For operators:

ALY = UL (L, to) AS Up(t, to)
Al (ty) = Al(ty) = A®
Note:
Hllnt<t) = u(;r@v tO) Hlnt L{O(t, to)
H(t) = Ug(t,to) HS Ut to)
Hy = Hy(to) = Hy
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Example of operators:
¢(x)*,a>(k), cl (p)
o(x, )" =U'(t) p(x)>U(1)
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Schrodinger EoM for |a; t>I using Hiyg
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Limit I.P. — H.P.
In the limit,

Hint —0
we have,
H — H, la; 1) — o)™
Ui (t) — 1 P'(z) — ¢ ()

U(t) — Up(t)

We can replace ”I” by "H” in all the expres-
sions (this is the limit when the full-theory
becomes free). This also means that, by in-
troducting Hj,, we have moved the operators
from H.P. (solving the free-theory) to I.P.
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Example of Heisenberg EoM. Starting from,
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The EoM reads,
d
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initial cond.:

H(k,t) = [a"(k,t), H"(t)],

a(k,t =0) = a®(k),

where,

Using [HS, a%(k)] = —wy a®(k), the EoM becomes,
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with the solution (note that H = HS =

a'(k,t) =

1
H__
N ; \/2Vwk

= HY),
(ZH (k) e_iwkt,

(as(k) o—ika +aTS(k) oika >

Alternatlvely, we can find ¢(z) directly from,
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using the Baker-Campbell-Hausdorff formula,
e*Be™* =B +[A B] + [A [A, B]]
+ A A - [A B +
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Wick’s theorem is a method of expanding the time-

ordered products in the S-matrix as a sum of nor-
mal products. It exploits a similar behaviour of
the time-ordering T{} and the normal-ordering N{}
meta operators.  Namely, they (i) both treat bo-
son/fermions equally, and (ii) both suppress equal-time
(anti)commutation relations.

For two boson operators, the following relation holds:

AB =N (AB)+ [A*,B7]

For two fermion operators we have anti-commutator in-
stead. The last object is a c-number and becomes the
propagator when time-ordered. Wick’s theorem states
that, at unequal-times, for any two operators it holds,

T{AB} = N {AB} + (0]AB|0)

The last term is the so called contraction between the
fields. The contractions are always between virtual (off-

shell) particles and never observed.
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