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|α; t〉S

AS = AH(t0)

Schrödinger
Picture

U(t, t0)

Time-evolution operator

Governed by H(t) using 1

Schrödinger Picture:

• State kets are time-dependent (governed by the Hamiltonian).
• Operators are stationary.
• Base kets are stationary.

Schrödinger Equations of Motion (I)

i
d

dt
|α; t〉S = H(t) |α; t〉S

|α; t〉S |t→t0 = |α; t0〉S = |α〉H

Time-evolution (unitary) operator:

|α; t〉S = U(t, t0) |α; t0〉S

Properties of U(t, t0):

U(t, t0)
†U(t, t0) = 1

U(t2, t1) = U(t1, t2)
†

U(t3, t2)U(t2, t1) = U(t3, t1)

Schrödinger Equations of Motion (II)

i
d

dt
U(t, t0) = H(t) U(t, t0)

U(t, t0)|t→t0 = 1

The most general solution to EoM:

U(t, t0) = T

{
exp
(
− i

t∫
t0

dt′H(t′)
)}

1

2

Solution when ∂H/∂t = 0 :

U(t, t0) = exp
(
− iH (t− t0)

)
Dyson series:

Solution to Schrödinger’s EoM for any H(t) where H(t′)
and H(t′′) do not commute at different times t′ 6= t′′.

Rewrite 1 as the integral equation,∫ t

t0

dt′ U(t′, t0) = −i

∫ t

t0

dt′ H(t) U(t′, t0),

U(t, t0) = 1− i

∫ t

t0

dt1 H(t1) U(t1, t0).

Then reqursively expand U(t1, t0) in the integrand,

U(t, t0) = 1− i

∫ t

t0

dt1 H(t) U(t1, t0) + ...

+ (−i)n
∫ t

t0

dt1...

∫ tn−1

t0

dtn H(t1) · · ·H(tn) + ...

After introducing the time-ordering, we get,

U(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1...

∫ t

t0

dtn T
{
H(t1) · · ·H(tn)

}
or in the condensed form, 2 .

|α〉H ≡ |α; t0〉S

AH(t)

Hesienberg
Picture

Heisenberg Picture:

• State kets are stationary.
• Operators are time-dependent (governed by the Hamiltonian).
• Base kets are time-dependent (evolve in reverse wrt observables).

For states:

|α; t〉S = U(t, t0) |α〉H

|α; t0〉S = |α〉H

For operators:

AH(t) = U †(t, t0) AS U(t, t0)

AH(t0) = AS

The last holds also for the Hamiltonian H:

HH(t) = U †(t, t0) HS U(t, t0)

HH(t0) = HS

If ∂H/∂t = 0 then HH = HS ≡ H.

Covariance between S.P. and H.P.

Heisenberg Equations of Motion

i
d

dt
AH(t) =

[
AH(t), HH(t)

]
+
∂

∂t
AH(t)

AH(t)|t→t0 = AH(t0) = AS

Example of states (in Fock space):

|nk〉H =
1√
n!

(
a†(k)

)n |0〉H
|1p,r〉H =

∣∣e−,p, r〉H = c†r(p) |0〉H∣∣1p1,r1 ; 1p2,r2

〉H
=
∣∣e−,p1, r1; e+,p2, r2

〉H
Example of operators:

φ(x)S, aS(k), c†r(p)

φ(x, t)H = U †(t)φ(x)S U(t)

Example of Heisenberg EoM. Starting from,

φ(x)S =
∑
k

1√
2V ωk

(
aS(k) eik·x +a† S(k) e−ik·x

)
,

φ(x, t)H =
∑
k

1√
2V ωk

(
aH(k, t) eik·x +a†H(k, t) e−ik·x

)
,

HS =
∑
k

ωk a
† S(k) aS(k).

The EoM reads,

i
d

dt
aH(k, t) =

[
aH(k, t), HH(t)

]
,

initial cond.: aH(k, t = 0) = aS(k),

where,

aH(k, t) = U †(t) aS(k)U(t),

HH(t) = U †(t)HS U(t),

U(t) = exp
(
−iHSt

)
.

Using [HS, aS(k)] = −ωk a
S(k), the EoM becomes,

i
d

dt
aH(k, t) = ωk a

H(k, t),

with the solution (note that H ≡ HS = HH),

aH(k, t) = aH(k) e−iωkt,

φ(x, t)H =
∑
k

1√
2V ωk

(
aS(k) e−ikx +a† S(k) eikx

)
.

Alternatively, we can find φH(x) directly from,

φ(x, t)H = eiHt φ(x)S e−iHt,

using the Baker-Campbell-Hausdorff formula,

eAB e−A = B + [A,B] + 1
2!

[A, [A,B]]

+ 1
n!

[A, [A, · · · , [A,B] ]] + . . . .|α; t〉I

AI(t)

Interaction
Picture

U0(t, t0) Uint(t, t0)

H = H0 +Hint

U(t, t0) = U0(t, t0) Uint(t, t0)

Split

×

=×

=

×=

Governed by H0

(using H.P.)
Governed by Hint

(using S.P.)

Heisenberg EoM for AI(t) using H0

i
d

dt
AI(t) =

[
AI(t), H I

0(t)
]

AI(t0) = AH(t0) = AS

Schrödinger EoM for |α; t〉I using Hint

i
d

dt
Uint(t, t0) = Hint(t) Uint(t, t0)

Uint(t, t0)|t→t0 = 1
Covariance between S.P., I.P. and H.P.

For states:

|α; t〉S = U0(t, t0) |α; t〉I

|α; t〉I = Uint(t, t0) |α〉H

|α; t〉S = U0(t, t0)Uint(t, t0) |α〉H

|α; t0〉S = |α; t0〉I = |α〉H

For operators:

AI(t) = U †0(t, t0) A
S U0(t, t0)

AH(t0) = AI(t0) = AS

Note:

H I
int(t) = U †0(t, t0) H

S
int U0(t, t0)

H I
0(t) = U †0(t, t0) H

S
0 U0(t, t0)

H I
0 = H I

0(t0) = HS
0

Limit I.P. → H.P.

In the limit,

Hint → 0

we have,

H → H0 |α; t〉I → |α〉H

Uint(t)→ 1 φI(x)→ φH(x)

U(t)→ U0(t)

We can replace ”I” by ”H” in all the expres-
sions (this is the limit when the full-theory
becomes free). This also means that, by in-
troductingHint, we have moved the operators
from H.P. (solving the free-theory) to I.P.

In the Interaction Picture, the fields φI retain
the properties of the free fields. (The fields
φI are the solutions to the free-theory EoM
for H0 obtained from L0.)

We postulate that the canonical commuata-
tion relations are valid also for the interact-
ing field operators with no gradient couplings
that modify the conjugate field (i.e., when
the interaction Lagrangian Lint does not con-
tain derivatives wrt fields).

At any fixed time, the full-interacting creator
and annihilation operators satisfy the same
algebra as in the free-theory (due to transla-
tion invariance of the Fock space).

Wick’s theorem is a method of expanding the time-
ordered products in the S-matrix as a sum of nor-
mal products. It exploits a similar behaviour of
the time-ordering T{} and the normal-ordering N{}
meta operators. Namely, they (i) both treat bo-
son/fermions equally, and (ii) both suppress equal-time
(anti)commutation relations.

For two boson operators, the following relation holds:

AB = N (AB) +
[
A+, B−

]
For two fermion operators we have anti-commutator in-
stead. The last object is a c-number and becomes the
propagator when time-ordered. Wick’s theorem states
that, at unequal-times, for any two operators it holds,

T {AB} = N {AB}+ 〈0|AB|0〉

The last term is the so called contraction between the
fields. The contractions are always between virtual (off-
shell) particles and never observed.
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The S-matrix, definition:

S ≡ Uint(∞,−∞)

Expansion:

S =
∞∑
n=0

S(n), where S(n) is n-th order:

S(n) =
(−i)n

n!

∫ ∞
−∞

dt1...

∫ ∞
−∞

dtn T
{
H I

int(t1) · · ·H I
int(tn)

}
=

(−i)n

n!

∫
dx1...

∫
dxn T

{
HI

int(x1) · · ·HI
int(xn)

}
=

in

n!

∫
dx1...

∫
dxn T

{
LI

int(x1) · · · LI
int(xn)

}
where,

LI
int(x) := Lint[φ

I](x)

The Schrödinger, Heisenberg and Interaction Pictures in QFT (FK8017 HT15)


