
Casimir effect

(Extra material to Tutorial 4)

Here we investigate consequences of the vacuum energy on a scalar boson. (We usually
think of the electromagnetic field when we think of the Casimir energy, but the argument works
as well for a scalar field!)

Let’s imagine a massless (m = 0) scalar boson in one dimension. The energy of this boson
is then En = c |pn| where pn = ~2π

L n where L is the length of the system. Thus En ∝ n
L . Even if

there are no particles present, the vacuum will contribute with energy En
2 for each mode in the

system. The vacuum energy can be modeled using the thermodynamic partition function as

Z (β) =
∞∑

m=−∞
e−

βEn
2 .

The vacuum energy contribution is E (L) = − ∂βZ|β=0 = 1
2
∑∞
m=−∞En, and is of course infinite.

Now we are interested in changes to this infinite energy as L is changed, therefore we compute
Z. For simplicity we write En

2 = EL |n| and get

Z (β) =
∞∑

m=−∞
e−βEL|n| = 2

∞∑
m=0

e−βELn − 1

(geometric series) = 2
∞∑
m=0

(
e−βEL

)n
− 1 = 2

1− e−βEL − 1

(rewrite) = 2e
βEL

2

e
βEL

2 − e−
βEL

2

− e
βEL

2 − e−
βEL

2

e
βEL

2 − e−
βEL

2

= e
βEL

2 + e−
βEL

2

e
βEL

2 − e−
βEL

2

=
cosh βEL

2
sinh βEL

2
.

To compute the energy we need the derivative with respect to β. Now, remember that the
derivatives are ∂x sinh x = cosh x and ∂x cosh x = sinh x. Then we have

E (β, L) = −∂βZ (β) = −∂β
cosh βEL

2
sinh βEL

2

= EL
2

cosh2 βEL
2 − sinh2 βEL

2
sinh2 βEL

2

= EL

2 sinh2 βEL
2
.

Now comes the crucial step: Imagine that we split the 1-D world into two partitions, one of
length ` and one of length L− ` where `� L. The point here is that

E (L) 6= E (`) + E (L− `) ,

but also that
∂` (E (`) + E (L− `)) 6= 0,

such that the energy depends on the size of `. Of our particular interest is the difference between
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E (L) and E (`) + E (L− `), we therefore compute

∆ (β, L, `) = E (β, `) + E (β, L− `)− E (β, L)

= E`

2 sinh2 βE`
2

+ EL−`

2 sinh2 βEL−`
2

+ EL

2 sinh2 βEL
2
.

We use that for small x, sinh x ≈ x. This is always valid since β → 0 at the end. Consequently

∆ (β, L, `) = E`

2
(
βE`

2

)2 + EL−`

2
(
βEL−`

2

)2 −
EL

2
(
βEL

2

)` +O
(
β−1

)

= 2
β2E`

+ 2
β2EL−`

− 2
β2EL

+O
(
β−1

)
= 0 +O

(
β−1

)
.

Hence we need to expand to one further order: We then have sinh2 x ≈ x2 + 1
3x

4. Expanding
this yields

∆ (β, L, `) ≈ −E` ·
`2 − `L+ L2

3 (L− `)L +O (β) `�L≈ −E`3 +O (β) .

Notice that β is not part of the difference in the leading order. We may therefore safely put
β = 0 in the expression. Finally if we expand E` = c~2π

` we see that the energy gained by
introducing a partition is

∆ (`) = −2πc~3 ·
1
`
,

and is negative and increasingly so for smaller `. Converting energy into a force gives

F (`) = −∂`∆ (`) = −2πc~3 ·
1
`2
,

such that the force pushing the plates together becomes stronger and stronger as the plates come
close together. This is the Casimir effect.
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