Casimir effect
(Extra material to Tutorial 4)

Here we investigate consequences of the vacuum energy on a scalar boson. (We usually
think of the electromagnetic field when we think of the Casimir energy, but the argument works
as well for a scalar field!)

Let’s imagine a massless (m = 0) scalar boson in one dimension. The energy of this boson
is then E,, = ¢|p,| where p,, = h%’rn where L is the length of the system. Thus E,, o< 7. Even if
there are no particles present, the vacuum will contribute with energy % for each mode in the

system. The vacuum energy can be modeled using the thermodynamic partition function as
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The vacuum energy contribution is £ (L) = — 932 ,_, = i E,,, and is of course infinite.
Now we are interested in changes to this infinite energy as L is changed, therefore we compute

Z. For simplicity we write £z = Ey, |n| and get
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To compute the energy we need the derivative with respect to 5. Now, remember that the

derivatives are 0, sinh x = cosh x and 0, cosh x = sinh . Then we have
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Now comes the crucial step: Imagine that we split the 1-D world into two partitions, one of
length ¢ and one of length L — £ where ¢ < L. The point here is that

E(L)#E(0) +E(L-0),

but also that
o (E )+ E(L-1))#0,

such that the energy depends on the size of £. Of our particular interest is the difference between



E (L) and E (¢) + E (L — ¢), we therefore compute
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We use that for small x, sinh x =~ x. This is always valid since 8 — 0 at the end. Consequently
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Hence we need to expand to one further order: We then have sinh? z ~ z2 + %x‘l. Expanding
this yields
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Notice that S is not part of the difference in the leading order. We may therefore safely put
B = 0 in the expression. Finally if we expand E, = chQT7r we see that the energy gained by
introducing a partition is
A= 2z L
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and is negative and increasingly so for smaller £. Converting energy into a force gives
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such that the force pushing the plates together becomes stronger and stronger as the plates come

close together. This is the Casimir effect.



