
Tutorial 12

Topics for today

• P1: Weyl fields (and problem of coupling by mass)

• P2: Transformation properties of vectors/axial vectors ☼

• P3: Massive vector bosons (the Proca equation)

• P4: EoM for the Yang-Mills Lagrangian ☼

• P5: SU(2) charges of weak interactions
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Problem 1
Consider

ψL = 1
2(1− γ5)ψ,

ψR = 1
2(1 + γ5)ψ,

where ψ is a Dirac spinor. Derive the equations of motion for these fields. Show
that they are decoupled in the case of a massless spinor. (These fields ψL and ψR

are known as Weyl fields.)

Proposed Solution

By multiplying the Dirac equation from the left by γ5, we obtain

γ5(iγµ∂µ −m)ψ = 0,
(iγµγ5∂µ + γ5m)ψ = 0,

(i/∂ +m)γ5ψ = 0.

Now apply i/∂ and m (multiply by) on ψL and ψR from the left

i/∂ψL = i/∂
[1
2(1− γ5)ψ

]
= 1

2
[
i/∂ψ − i/∂γ5ψ

]
(1)

i/∂ψR = i/∂
[1
2(1 + γ5)ψ

]
= 1

2
[
i/∂ψ + i/∂γ5ψ

]
(2)

mψL = 1
2(mψ −mγ5ψ) (3)

mψR = 1
2(mψ +mγ5ψ) (4)

Subtract (4) from (1) and (3) from (2)

i/∂ψL −mψR = 1
2
[
i/∂ψ − i/∂γ5ψ −mψ −mγ5ψ

]
= 1

2
[(

i/∂ψ −mψ
)
−
(
i/∂γ5ψ +mγ5ψ

)]
i/∂ψR −mψL = 1

2
[
i/∂ψ + i/∂γ5ψ −mψ +mγ5ψ

]
= 1

2
[(

i/∂ψ −mψ
)

+
(
i/∂γ5ψ +mγ5ψ

)]
thus

i/∂ψL −mψR = 0,
i/∂ψR −mψL = 0.

Clearly, the fields are decoupled in the case of a massless spinor.
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Problem 2 ☼

For a Dirac field ψ, obtain the action of Lorentz transformations on ψ. Investigate
the transformation properties under proper orthochronous Lorentz transformation
of:

• ψ̄ψ,

• ψ̄γµψ,

• ψ̄γµγ5ψ .

Assumptions

Let Λ be an ocrthochronous Lorentz transformations,

xµ → x′µ = Λµ
νx

ν MS(A.48)

i.e. Λ0
0 > 0 and det(Λµ

ν) = ±1, so that the sense of time is not reversed, but the
transformation may or may not involve spatial inversion.

It can be shown1 corresponding that to each such Lorentz transformation Λ one
can construct a non-singular 4x4 matrix S = S(Λ) with the properties

γν = Λν
µSγ

µS−1 MS(A.49)

and
S−1 = γ0S†γ0. MS(A.50)

If the transformation properties of the Dirac spinor ψ(x) are defined by

ψ(x)→ ψ′(x′) = Sψ(x), MS(A.52)

we have the transformation properties of the corresponding adjoint spinor

ψ̄(x)→ ψ̄′(x′) = (Sψ(x))† γ0 = ψ†(x)S†γ0 = ψ†(x)γ0S−1 = ψ̄(x)S−1.

Proposed Solution

(1) For the first case ψ̄ψ, we have (see Tutorial 8)

ψ̄ψ → ψ̄′ψ′ = ψ̄S−1Sψ = ψ̄ψ,

thus ψ̄ψ is invariant under the Lorentz gransformations and behaves as a scalar.
1For its derivation Mandl and Shaw referenced pp. 358-359 in H. A. Bethe and R. W. Jackiw,

Intermediate Quantum Mechanics, 2nd edn, Benjamin, New York, 1968.

FK8027 3 (12)



(2) For the case ψ̄γµψ we get,

ψ̄γµψ → ψ̄′γµψ′ =
(
ψ̄S−1

)
γµ (Sψ)

= ψ̄
(
S−1γµS

)
ψ

On the other hand, (note that Λµ
ν are just numbers)

γµ = Λµ
νSγ

νS−1

γµ = SΛµ
νγ

νS−1

S−1γµS = Λµ
νγ

ν

Substituting in the previous expression yields,

ψ̄′γµψ′ = ψ̄ (Λµ
νγ

ν)ψ
= Λµ

ν

(
ψ̄γνψ

)
and since vectors transform as V ′µ = Λµ

νV
ν we conclude that ψ̄γνψ transform as a

vector.
(3) For the last case ψ̄γµγ5ψ → ψ̄′γµγ5ψ′, we obtain,

ψ̄′γµγ5ψ′ =
(
ψ̄S−1

)
γµγ5 (Sψ)

= ψ̄
(
S−1γµSS−1γ5S

)
ψ

= ψ̄
(
S−1γµS

) (
S−1γ5S

)
ψ

Λµ
νψ̄γ

ν
(
S−1γ5S

)
ψ

and here starts the fun stuff, to simplify S−1γ5S. We start from the definition of γ5,

γ5 ≡ iγ0γ1γ2γ3 MS(A.7)

rewritting γ5 using the completely antisymmetric alternating symbol εµ1µ2µ3µ4 which
is equal to +1 for (µ1µ2µ3µ4) an even permutation of (0, 1, 2, 3), is equal to −1 for
an odd permutation, and vanishes if two or more indices are the same.

γ5 = i
4!εµ1µ2µ3µ4γ

µ1γµ2γµ3γµ4 .

This gives,

S−1γ5S = i
4!εµ1µ2µ3µ4Sγ

µ1γµ2γµ3γµ4S−1

= i
4!εµ1µ2µ3µ4Sγ

µ1S−1 Sγµ2S−1 Sγµ3S−1 Sγµ4S−1

= i
4!εµ1µ2µ3µ4Λµ1

ν1γ
ν1 Λµ2

ν2γ
ν2 Λµ3

ν3γ
ν3 Λµ4

ν4γ
ν4
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= i
4!εµ1µ2µ3µ4Λµ1

ν1Λµ2
ν2Λµ3

ν3Λµ4
ν4γ

ν1γν2γν3γν4

Here we recognize an expression for the determinant of Λ

det(Λ) = εµ1µ2µ3µ4Λµ1
0Λµ2

1Λµ3
2Λµ4

3,

from which, and the antysymmetric properties of εµ1µ2µ3µ4 , it follows.

εµ1µ2µ3µ4Λµ1
ν1Λµ2

ν2Λµ3
ν3Λµ4

ν4 = εν1ν2ν3ν4 det(Λ).

Therefore, from the first expression for the determinant

S−1γ5S = i
4!εν1ν2ν3ν4 det(Λ)γν1γν2γν3γν4 = det(Λ)γ5.

Substituting the last relation back into ψ̄′γµγ5ψ′ gives

ψ̄′γµγ5ψ′ = Λµ
ν

(
det(Λ)γ5

)
ψ

= det(Λ)Λµ
ν

(
ψ̄γνψ

)
.

The factor det(Λ) in the transformation law indicates that we are dealing with a
tensor density quantity.

Comment: A tensor density transforms as a tensor when passing from one coor-
dinate system to another, except that it is additionally multiplied or weighted by a
power of the Jacobian determinant of the coordinate transition function or its ab-
solute value. For example, a typical tensor density is the volume element where we
add a scalar density

√
− det g to make the volume element transforming properly as

a tensor, that is
∫ √
− det gd4x. Here we have a special case of a pseudotensor with

sign-flip under an improper rotation (= a proper rotation followed by reflection).

In our case, the part Λµ
ν

(
ψ̄γνψ

)
transforms as a vector, while det(Λ) = −1 changes

the sign in case of the spatial reflections, and consequently ψ̄′γµγ5ψ′ transforms as
an axial vector.

To summarize, ψ̄ψ transforms as a scalar, ψ̄γµψ as a vector and ψ̄γµγ5ψ as an
axial vector.
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Problem 3, Massive vector bosons
Derive equations of motion for the Lagrangian density

L = −1
4FµνF

µν + 1
2m

2
WW

µWµ

and interpret the results.

Proposed Solution

Let us look at the equation of motion of the massive vector boson. The equation of
motion can be found from the Lagrangian

L = −1
4FµνF

µν + 1
2m

2
WW

µWµ

= −1
4 (∂µWν − ∂νWµ) (∂µW ν − ∂νW µ) + 1

2m
2
WW

µWµ

= −1
2
(
∂µWν∂

µW ν − ∂µWν∂
νW µ −m2

WW
µWµ

)
where Fµν = ∂µWν − ∂νWµ. The Lagrangian density expands as

L = −1
4 (∂µWν − ∂νWµ) (∂µW ν − ∂νW µ) + 1

2m
2
WW

µWµ

= −1
2
(
∂µWν∂

µW ν − ∂µWν∂
νW µ −m2

WW
µWµ

)
= −1

2
(
∂νWµ∂

νW µ − ∂νWµ∂
µW ν −m2

WW
µWµ

)
As usual, the equations of motion are obtained frome the Euler-Lagrange equation

0 = ∂L
∂Wµ

− ∂ν
∂L

∂ (∂νWµ) .

Evaulating the individual terms we get

∂L
∂Wµ

= m2
WW

µ

and

∂ν
∂L

∂ (∂νWµ) = −∂ν [∂νW µ − ∂µW ν ]

= ∂µ∂νW
ν − ∂ν∂νW µ

= ∂µ∂νW
ν −�W µ

thus combining we get the equations of motion (the Proca equation)

�W µ +m2
WW

µ − ∂µ∂νW ν = 0 .

FK8027 6 (12)



Taking the divergence of the proca equation ∂µ, we obtain

0 = ∂µ
[
�W µ +m2

WW
µ − ∂µ∂νW ν

]
= �∂µW

µ +m2
W∂µW

µ − ∂µ∂µ∂νW ν

= �∂µW
µ +m2

W∂µW
µ −�∂νW

ν

0 = m2
W∂µW

µ

or finally
∂µW

µ = 0 .

The last condition is a consequence of the Proca equation. This is very differently
when compared to massless vector field (photons) where ∂µAµ = 0 was a possible
choice of fixing the gauge (the Lorenz gauge).

Thus for massive vector bosons, there is no freedom in choosing a
guage.

In a sense, the Lorenz gauge has already been imposed by the equations of mo-
tion. This is a direct consequence on the number of linearly independent components
of the fields W µ.

Let us count the degrees of freedom:

• For massless vector boson Aµ there are 2 = 4 − 2 independent components.
One component can be removed by using the freedom in the choice of the
gauge transformation and the other can be eliminated using the equations of
motion and the residual gauge invariance.

• However, for a massive vector boson W µ are actually 3 = 4 − 1 independent
components, where one component is removed by ∂µW µ = 0 without any fixing
the gauge.

Consequently, for mW 6= 0 the Lagrangian is no longer invariant under gauge trans-
formation

Wµ → W ′
µ = Wµ + i∂µφ(x).

Indeed, Fµν → F ′µν is invariant, but

W µWµ → W ′µW ′
µ = (Wµ + i∂µφ(x)) (W µ + i∂µφ(x))

W ′µW ′
µ = WµW

µ + 2i∂µφ(x)W µ − ∂µφ(x)∂µφ(x)

is not invariant. Under integration by parts, it can be rewritten as

W µWµ → W ′µW ′
µ = WµW

µ + 2i∂µφ(x)W µ − ∂µφ(x)∂µφ(x)
= WµW

µ + 2i∂µ[ φ(x)W µ︸ ︷︷ ︸
compact support

]− 2iφ(x)∂µW µ − ∂µφ(x)∂µφ(x)

= WµW
µ − 2iφ(x) ∂µW

µ︸ ︷︷ ︸
0 from EoM

−∂µφ(x)∂µφ(x)
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= W 2 − (∂µφ)2

but still, the contribution − (∂µφ)2 is out there. As the result, this theory is not
normalizable.

How to deal with this? By using the Higgs mechanism. The early approach was
the Stückelberg trick to add an extra scalar field. The Stückelberg action describes
a massive spin-1 field as an Yang–Mills theory coupled to a real scalar field φ.

L = −1
4(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) + 1

2(∂µφ+mAµ)(∂µφ+mAµ)

This is a special case of the Higgs mechanism, where, in effect, the mass of the
Higgs scalar excitation has been taken to infinity, so the Higgs has decoupled and is
ignorable. Gauge-fixing φ = 0, yields the Proca action.
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Problem 4, EoM for the Yang-Mills Lagrangian ☼

The Lagrangian density for SU(n) gauge fields (also called Yang-Mills Lagrangian)
reads,

LYM = −1
4TrF 2 == −1

4F
j
µνF

µνj.

Evaluate the equation of motion for Aiµ, expressing it in covariant form.
Use the convention where the generators of the Lie algebra corresponding to

the F -quantities are satisfying

[Ti, Tj] = ifijkTk, Tr(TiTj) = δij. (4.1)

Proposed Solution

Observe

LYM = −1
4TrF 2 = −1

4Tr(FµνF µν) = −1
4Tr(F j

µνTj F
µνkTk)

= −1
4F

j
µνF

µνkTr(TjTk) = −1
4F

j
µνF

µνkδjk = −1
4F

j
µνF

µνj.

We start from
Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

(The last relation can be derived by the commutator [Dµ, Dν ] = igFµν = igT jF j
µν

where the covariant derivative is defined asDµ = ∂µ + igT jAjµ. Note: the sign in
front of g depends on the convention used.)

After expanding into terms of the generators Tj, we get

F j
µνTj = ∂µA

j
νTj − ∂νAjµTj + ig

(
(AjµTj)(AkνTk)− (AjνTj)(AkµTk)

)
= ∂µA

j
νTj − ∂νAjµTj + ig

(
AjµA

k
ν − AjνAkµ

)
TjTk

= ∂µA
j
νTj − ∂νAjµTj + igAjµAkν [Tj, Tk]

= ∂µA
j
νTj − ∂νAjµTj + igAjµAkν (ifjkmTm) ,

Tr(F j
µνTjTi) = Tr

(
∂µA

j
νTjTi − ∂νAjµTjTi − gfjkmAjµAkνTmTi

)
.

Now, from Tr(TiTj) = δij,

F i
µν = ∂µA

i
ν − ∂νAiµ − gf ijkAjµAkν .

The equations of motion can be dervied from the Euler-Lagrange equations,

∂µ
∂L

∂(∂µAiν)
− ∂L
∂Aiν

= 0. (4.2)
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We start with the evaluation of the second term, which gives,

∂L
∂Aiν

= ∂

∂Aiν

(
−1

4F
a
ρσF

ρσa
)

= ∂

∂Aν

(
−1

4
(
∂µA

a
ν − ∂νAaµ − gfajkAjρAkσ

)
F ρσa

)
= gfajiAjρF

ρνa = −gf ibaAbµF µνa = −gf ijkAjµF µνk

The evaluation of the first term is slightly more complicated if done first time, but
we may reuse what we know from the Maxwell field,

∂L
∂(∂µAiν)

= ∂

∂(∂µAiν)

(
−1

4F
a
ρσF

ρσa
)

= −F µνi

Now substituting the last two expressions back into (4.2)

∂µ(−F µνi)− (−gf ijkAjµF µνk) = 0,

∂µF
µνi = gf ijkAjµF

µνk.
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Problem 5, SU(2) charges of weak interactions
When assigning charges to different object, it is not relevant how many different
operators exist in a theory. Rather it is important how many operators can be found
that simultaneously commutes. In this course, we are looking at weak interactions,
with is a SU(2) theory. As such there are three generators τ1, τ2 and τ3 with the
corresponding charges Q1, Q2 and Q3.

However, as these generators do not commute

[τi, τj] = iεijkτk,

and neither does the charges

[Qi, Qj] = iεijkQk.

To get a feeling for how this works, we may review an equivalent, by the familiar
problem.

The spin assignment in SU(2)

The particle spin is described by the SU(2) operators Jx, Jy and Jz depending on
the axis of quantization. These operators also satisfy the dening relations for SU(2)

[ Ji, Jj ] = iεijkJk.

given by

Jx = 1
2

0 1
1 0

 = 1
2σx, Jx = 1

2

0 −i
i 0

 = 1
2σy, Jz = 1

2

1 0
0 −1

 = 1
2σz.

Here, a maximal set of commuting matrices are given by just one of the J ’s. This
reflects the notion that spin is only well dened in one direction at a time. As is
familiar it is possible to construct a linear combination

J± = Jx ± iJy

such that
[ Jz, J± ] = ±J±.

In this sense J± are acting as the raising and lowering operators for the spin.

In a similar fashion it is possible to construct the charges

Q± = Q1 ± iQ2
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that has the commutation relation

[Q3, Q± ] = ±Q±.

Thus in the same way as J change the spin, so does Q change the weak charge. This
ties into the W boson in terms of the conserved currents

Jµi = 1
2Ψ̄LγµτiΨL

where

Ψ =
ψνl

ψl

 , ΨL =
ψL

νl

ψL
l


and τi are the Pauli matrices. The three currents are then

Jµ1 = 1
2
{
ψ̄L
νl
γµψL

l + ψ̄L
l γ

µψL
νl

}
Jµ2 = 1

2
{
ψ̄L
νl
γµψL

l − ψ̄νl
γµψL

l

}
Jµ3 = 1

2
{
ψ̄L
l γ

µψL
l + ψ̄νl

γµψL
νl

}
We can see that

J3 = JL
l + JL

νl

is a combination of the left-handed electron an neutrino currents.
The other two currents are tricker, by we can write them as

Jµ = Jµ1 + iJµ2 = ψ̄L
νl
γµψL

l

J†µ = Jµ1 − iJµ2 = ψ̄L
l γ

µψ̄L
νl

The point here is that Q3 = J0
3 and Q+ = J0 and Q− = J†0. Thus the currents Jµ

and J†µ carry weak charges ±1, which can be seen from [Q3, Q± ] = ±Q±.
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