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1 Path integrals - Mathematical Preliminaries

Based on Altland & Simons 3.2
In order to treat any path integrals we will need some mathematical preliminaries. The most
important will be how to perform Gaussian integrals in higher dimensions. We start with the
simple Gaussian integral in one dimension

Ia,b =
∫ ∞
−∞

dve−
a
2 v

2+bv =
√

2π
a
e
b2
2a

by analytical continuation, this formula is valid also for complex a and b as long as < (a) > 0.
From here it is straight forward to generalize to a matrix structure. Consider the integral

IA =
∫ ∞
−∞

dv e−
1
2 vTAv

where the integration now is over the N -dimensional coordinate v and A is a positive definite
real symmetric matrix. These matrices can always be diagonalized with an orthonormal coor-
dinate transformation O such that A = OTDO and as O is orthonormal v → OTv with unit
Jacobian. Thus

IA =
∫ ∞
−∞

dv e−
1
2 vTOTDOv =

[
v→ OTv

]
=
∫ ∞
−∞

dv e−
1
2 vTOOTDOOTv =

∫ ∞
−∞

dv e−
1
2 vTDv

and as D is diagonal we may split the integral as

IA =
N∏
i=1

(∫ ∞
−∞

dvi e
− 1

2Div
2
i

)
=

N∏
i=1

(√
2π
Di

)

=
√

2πN√
det (D)

=
√

2πN√
det (A)

The last two steps happens as det D = ∏
iDi and det D = det A. From here is simple to also

include a linear term ejTv as

IA,j =
∫ ∞
−∞

dv e−
1
2 vTAv+jTv =

∫ ∞
−∞

dv e−
1
2(vTAv−jTv−vT j).
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We proceed by completing the multidimensional square as
(
vT − jTA−1

)
A (v−A−1j) = vTAv−

vT j− jTv + jTA−1j such that

IA,j =
∫ ∞
−∞

dv e−
1
2 vTAv+jTv = e

1
2 jTA−1j

∫ ∞
−∞

dv e−
1
2(vT−jTA−1)A(v−A−1j)

= [shift v] = e
1
2 jTA−1j

∫ ∞
−∞

dv e−
1
2 vTAv

= IAe
1
2 jTA−1j

Thus ∫ ∞
−∞

dv e−
1
2 vTAv+jTv = e

1
2 jTA−1j

√
2πN√

det (A)
(1)

2 Wick’s Theorem

The final identity above gives us a way to understand both mow the Feynman rules and Wick’s
theorem arise using path integrals. The trick is to view the linear term jTv as a source for v
and use it to generate identities. For instance, we may take the derivative w.r.t. jk and we get

∫ ∞
−∞

dv e−
1
2 vTAv+jTvvk = ∂

∂jk
IA,j = IA

∂

∂jk
e

1
2 jTA−1j = IAe

1
2 jTA−1j

(
A−1j

)
k

where we used the identity

∂

∂jk

1
2jTA−1j = 1

2
∂

∂jk

∑
il

(
jiA

−1
il jl

)
=
∑
l

A−1
kl jl =

(
A−1j

)
k

Differentiating once more we have

∂

∂jl

(
A−1j

)
k

= A−1
kl

such that

∫ ∞
−∞

dv e−
1
2 vTAv+jTvvlvk = ∂

∂jk

∂

∂jl
IA,j = IA

∂

∂jl

∂

∂jk
e

1
2 jTA−1j

= IAe
1
2 jTA−1j

(
A−1j

)
l

(
A−1j

)
k

+ IAe
1
2 jTA−1jA−1

lk

This may look messy, but putting j = 0 at the end of the calculation leads to∫ ∞
−∞

dv e−
1
2 vTAvvlvk = IAA

−1
lk

Introducing the notation 〈. . . 〉 = 1
IA

∫∞
−∞ dv e−

1
2 vTAv (. . . ) we have just proved

〈vkvl〉 = A−1
lk (2)

Thus we started at 〈
ejTv

〉
= e

1
2 jTA−1j (3)
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and by taking two derivatives we arrived at 2. Taking two more derivatives we have

∂jm1
∂jm2

∂jm3
∂jm4

〈
ejTv

〉
=
〈
ejTvvm1vm2vm3vm4

〉
=

∂jm1
∂jm2

∂jm3
∂jm4

e
1
2 jTA−1j

= ∂jm2
∂jm3

∂jm4
e

1
2 jTA−1j

(
A−1j

)
m1

= ∂jm3
∂jm4

e
1
2 jTA−1j

[(
A−1j

)
m2

(
A−1j

)
m1

+ A−1
m1m2

]
= ∂jm4

e
1
2 jTA−1j

[(
A−1j

)
m3

(
A−1j

)
m2

(
A−1j

)
m1

+ A−1
m1m3

(
A−1j

)
m2

+

+A−1
m2m3

(
A−1j

)
m1

+ A−1
m1m2

(
A−1j

)
m3

]
(4)

= e
1
2 jTA−1j

[(
A−1j

)
m3

(
A−1j

)
m2

(
A−1j

)
m1

(
A−1j

)
m4

]
+e 1

2 jTA−1j
[
A−1
m1m2

(
A−1j

)
m3

(
A−1j

)
m4

+ A−1
m1m3

(
A−1j

)
m2

(
A−1j

)
m4

(5)

+ A−1
m1m4

(
A−1j

)
m3

(
A−1j

)
m2

+ (6)

+ A−1
m2m3

(
A−1j

)
m1

(
A−1j

)
m4

+ A−1
m2m4

(
A−1j

)
m3

(
A−1j

)
m1

+

+A−1
m3m4

(
A−1j

)
m2

(
A−1j

)
m1

]
(7)

+e 1
2 jTA−1j

[
A−1
m1m2A

−1
m3m4 + A−1

m1m3A
−1
m2m4 + A−1

m2m3A
−1
m1m4

]
Finally setting j = 0 gives

〈vm1vm2vm3vm4〉 = A−1
m1m3A

−1
m2m4 + A−1

m2m3A
−1
m1m4 + A−1

m1m2A
−1
m3m4 (8)

As should be clear from the above example, going to higher and even number of derivative will
give the result 〈 2n∏

i=1
vmi

〉
=

∑
kj∈{all paring of mi}

A−1
mk1mk2

. . . A−1
mk2n−1mk2n

(9)

whereas to such identity exits for an odd number of insertions of v.
From here it should be clear why Wick’s theorem look the way it does. Looking at the last piece
of 5 we see that we may identify all the pieces to Wick’s theorem, including 0-contractions,
1-contractions and 2-contractions.

2.1 The propagator and the equation of motion

From (2) it is suggestive why the propagator is the inverse of the equation of motion. Assume
for instance that Aik is the Fourier version of the scalar field Lagrangian ∂µ∂µ −m2 which is
Apipj = Lpipj = δpipj (pi,µpµi −m2). The the two-point function is then

〈
vpivpj

〉
= A−1

pipj
=

δpipj
p2
i −m2

which is exactly the propagator.
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2.2 Feynman diagram structures

To keep the notation down, you will take the first steps towards Feynman rules and diagrams
without leaving the regularized N -dimensional space. We now think more specifically of A−1

as the greens function or propagator of a non-interacting system. For instance the thee terms
in 2 and 8 may graphically be depicted by all the ways of going from the l to k

•lf•k

and the points m1 and m2 to m3 and m4 as

•m1f•m3

•
m2
f•

m4

+
•m1 •m3

de
•
m2
ed•

m4

+
•m1 •m3

•
m2
b b•

m4

(In a system with causality the last one will of course disappear).
We will now investigate the consequence of introducing an interaction into the system. The
interaction will be of the the form g

∑
i v

4
i such that there is an extra factor of e−g

∑
i
v4
i in the

expectation value. Roughly speaking e are interested in evaluating the correlator 〈vm1vm2〉 in
the presence of e−g

∑
i
v4
i . The correlator is thus

〈vm1vm2〉Int =
〈
vm1vm2e

−g
∑

i
v4
i

〉
We precede by looking a the first order expansion of the exponential as

〈vm1vm2〉Int =
〈
vm1vm2

(
1− g

∑
i

v4
i + . . .

)〉
= 〈vm1vm2〉 − g

〈
vm1vm2

∑
i

v4
i

〉
+ . . .

The first piece is the ordinary propagator, but the second price contains the first non-trivial
diagrams. Using the wick expansion rules from (9) we have〈

vm1vm2

∑
i

v4
i

〉
= A−1

m1m2

∑
i

〈
v4
i

〉
+ 4

∑
i

A−1
m1i

〈
vm2v

3
i

〉
= 3A−1

m1m2

∑
i

(
A−1
ii

)2
+ 12

∑
i

A−1
m1iA

−1
m2iA

−1
ii

These two terms correspond to the diagrams

3 •m1f•m2 ×
∑
i
ow •

i
ow + 12

∑
i

•
miow b•
ib•
m2The second diagram is a first order contribution to the propagator, and the first term is a bare

propagator and a vacuum bubble.

3 Path integrals - Effective theories

Based on Altland & Simons 3.2
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Lets take a look at an interacting theory, not unlike QED, but well stock with real bosons for
simplicity. The theory is

Lφ = 1
2φ

(
∂2 −m2

)
φ

Lϕ = 1
2ϕ

(
∂2 −M2

)
ϕ (10)

which are the ordinary non-interacting pieces. We also have an interaction

LI = ıgφ2 (x)ϕ (x)

Where the existence of the ı will be apparent soon. Here the field ϕ plays a role similar to that
of a photon field. We would not like to know what the effective theory is at low momentum.
For this purpose we may use the path integrals. We will still work in regularized version to
keep the arithmetics simple - but the structure is the same in the full-fledged version also.
The path integral correlator will now we written

〈. . . 〉 =
∫ ∞
−∞

dNφ
∫ ∞
−∞

dNϕ e−Sφ,ϕ (. . . )

where
Sφ,ϕ = 1

2
∑
i,j

φiAijφj + 1
2
∑
i,j

ϕiBijϕj + ıg
∑
i

φ2
iϕi.

Here Aij and Bij are the regularized versions of (10). As the interaction is written the path
integral is in real space.
We not imagine that m�M such that free ϕ-particles are rarely or never seen, except at high
energies. In those cases the only relevant correlators would be of the type 〈∏n

i φi〉 such that
there are no ϕ contributions.1 We may then write

〈
n∏
i

φki

〉
=
∫ ∞
−∞

dNφ
∫ ∞
−∞

dNϕ exp

−1
2
∑
i,j

φiAijφj −
1
2
∑
i,j

ϕiBijϕj − ıg
∑
i

φ2
iϕi


n∏
i

φki

and integrate out the ϕ contribution. In doing so we close our eyes for the existence ϕ-field
but instead obtain an effective interaction for the φ-fields (which will be φ4 at low momentum).
For this we use the relation (given in tutorial 15)

∫ ∞
−∞

dv e−
1
2 vTAv+jTv = e

1
2 jTA−1j

√
2πN√

det (A)
(11)

Using this relation on the field ϕ gives

〈
n∏
i

φki

〉
=
√

2πN√
det (B)

∫ ∞
−∞

dNφ exp

−1
2
∑
i,j

φiAijφj

 e 1
2
∑

i,j(−ıgφ2
i )B−1

ij (−ıgφ2
j)

n∏
i

φki

Effectively we have now introduced a new interaction on the form

LII = −1
2g

2∑
i,j

φ2
iB
−1
ij φ

2
j .

As it stands this effective theory is non-local as it contains a factor φ2 (x)B−1 (x, y)φ2 (y). We
will hover see that at large distance B−1 (x, y) ≈ δ (x− y).

1Of course there exists correaltors that contain one or more final ϕ-particles, but these will be very unlikely.
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3.1 Momentum

Do do so we transfer to momentum space where the original interaction would be written

LI =
∑
k

Jk︷ ︸︸ ︷
ıg
∑
p1,p2

δp1+p2,kφ̃p1φ̃p2 ϕ̃k

as the interaction was translation invariant. Likewise the propagator would have been

B̃−1
k,k′ = δk,k′

k2 +M2

Using the result (11) would give the effective interaction

LII = 1
2
∑
k,k′

JkB̃
−1
k,k′Jk′

= 1
2
∑
k,k′

(
ıg
∑
p1,p2

δp1+p2,kφ̃p1φ̃p2

)
δk,k′

k2 +M2

ıg ∑
p′1,p

′
2

δp′1+p′2,k′φ̃p′1φ̃p′2


= −1

2g
2∑

k

∑
p1,p2

∑
p′1,p

′
2

φ̃p1φ̃p2

δp1+p2,kδp′1+p′2,k

k2 +M2 φ̃p′1φ̃p′2

= −1
2g

2 ∑
p1,p2

∑
p′1,p

′
2

φ̃p1φ̃p2

δp1+p2,p′1+p′2
q2 +M2 φ̃p′1φ̃p′2

where q = p1 + p2. As you can see this is the structure we are already familiar with from
propagators and operators formalism. Now wee look at low momentum such that (p1 + p2)2 ≈
4m2 �M2. At low momentum the q2 vanished compared to the M2piece and we have

LII = −1
2
g2

M2

∑
p1,p2

∑
p′1,p

′
2

φ̃p1φ̃p2φ̃p′1φ̃p′2δp1+p2,p′1+p′2 .

Fourier transforming back to real space this precisely gives the interaction

LII = −1
2
g2

M2

∑
i

φ4
i

which is an example of how φ4 theory may arise out of an underlying φ2ϕ.
That this should happen should not be to surprising as the diagram

p1d p′1ed•ggg•ee dp2e p′2d
at low momenta (long distances), becomes

p1d p′1ed•ee dp2e p′2d
such that the mediating interaction is difficult to see. The real space picture of the above
statements is that a massive force carrier has a potential on the form

V (r) = e−Mr

r
,

which investigated at r & 1
M

looks like V (r) ≈ δ (r).
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4 Fermions and Grassmann Numbers

See Mandl & Shaw 12.4.2, 13.1.2 & 13.1.3, or Altland & Simons 4.1.2
When we construct path integrals for fermions we naturally run in to a problem. For bosons,
we replaced the quantum fields with scalar of vector numbers φ̂→ φ and Âµ → Aµ, but what
should be do with the fermions?
We know that two fermions operators anti-commute as {ψi, ψj} = 0, this means that the
numbers that we replace them with must also anti-commute. Thus, we make the replacement
ψ → η where

ηiηj = −ηjηi (12)

These objects are scalar, but not numbers in the ordinary sense. At best, we may think of them
as some kind of matrices....
The algebra of these numbers work as follows. We may define a derivative operators with
respect to ηi that is ∂i = ∂

∂ηi
such that

∂iηj = δij (13)

in analogy with ordinary c-numbers. However since

∂iηjηi = −∂iηiηj = −ηj

then for consistency
∂iηjηi = −ηj∂iηi = −ηj

such that ∂iηj = −ηj∂i + δij. Thus Grassmann variables η and their derivatives ∂
∂η

also anti-
commute.
Grassmans may be multiplied by any complex number and thus forms a vector space

c0 + ciηi + cjηj ∈ A

For closure two objects α, β ∈ A forms an object αβ ∈ A. As η2
i = 0 any object in A may be

written
α = c0 +

∑
i

ciηi +
∑
i<j

cijηiηj +
∑
i<j<k

cijkηiηjηk + · · · ∈ A

This is also the way to define functions of Grassmann variables. A function of only one Grass-
mann variable f (η) may be defined by it’s Taylor expansion:

f (η) = f (0) + η
∂

∂η
f (η)

∣∣∣∣∣
η=0

then it stops as η2 = 0. Similarly for multi-variable functions

f ({ηi}) = f (0) +
∑
i

ηi ∂if |{η}=0 +
∑
i<j

ηiηj ∂i∂jf |{η}=0 +
∑
i<j<k

ηiηjηk ∂i∂j∂kf |{η}=0 + . . .

From this we ca see that many fermionic functions are actually the same, as there are only tow
components in the Taylor-Expansion. For instance eαη =

(
1 + αη

2

)2
since

(
1 + αη

2

)2
= 1 + 2αη2 + α2η2

4 = 1 + αη = eαη
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We may also define a Grassmann integral as∫
dη 1 = 0 (14)∫
dη η = 1 (15)

This does look funny. But it is apparently the only reasonable definition. Using these definitions
we may compute the Grassmann Gaussian integral as∫

dη dη̄ eαη̄η =
∫
dη dη̄ (1 + αη̄η) =

∫
dη αη = α

Also for a diagonal matrix αij = δijαi:

∫ N∏
i=1

(dηi dη̄i) e
∑1

i=1 η̄iαiηi =
N∏
i=1

(∫
dηi dη̄i e

η̄iαiηi

)
=

N∏
i=1

αi = detα

If α is a hermitian matrix it it possible to diagonalize it using unitary transformations. As such
the more generic result

∫ N∏
i=1

(dηi dη̄i) e
∑1

i=1 η̄iαijηi = detα

also holds. Notice here that η and η̄ are two distinct variables, otherwise the integral would
vanish.
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