Solutions for Tutorial 7, HT2016 on the Dirac field

Olga Bessidskaia Bylund

December 18, 2016

1. We have the Dirac equation

$$
\begin{equation*}
\left[i \hbar \gamma^{\mu} \partial_{\mu}-m c\right] \psi(x)=0 \tag{1}
\end{equation*}
$$

The left hand side of the Dirac equation under transformation becomes

$$
\begin{array}{r}
{\left[i \gamma^{\mu}\left(\Lambda^{-1}\right)_{\mu}^{\nu} \partial_{\nu}-m\right] S \psi(x)=} \\
=S S^{-1}\left[i \gamma^{\mu}\left(\Lambda^{-1}\right)_{\mu}^{\nu} \partial_{\nu}-m\right] S \psi(x) . \tag{3}
\end{array}
$$

Since S is constant, it can be moved through the partial derivative. The matrix S acts on spinors while $\left(\Lambda^{-1}\right)_{\mu}^{\nu}$ acts on spacetime, so these two matrices commute and we can rewrite the expression as:

$$
\begin{equation*}
L H S=S\left[i S^{-1} \gamma^{\mu} S\left(\Lambda^{-1}\right)_{\mu}^{\nu} \partial_{\nu}-m\right] \psi(x) . \tag{4}
\end{equation*}
$$

We now rearragne the expression

$$
\begin{equation*}
\gamma^{\nu}=\Lambda_{\mu}^{\nu} S \gamma^{\mu} S^{-1} \tag{5}
\end{equation*}
$$

by multiplying it by S^{-1} from the left and by S from the right, giving:

$$
\begin{equation*}
S^{-1} \gamma^{\nu} S=\Lambda_{\mu}^{\nu} \gamma^{\mu} \tag{6}
\end{equation*}
$$

Then

$$
\begin{array}{r}
L H S=S\left[i \Lambda_{\sigma}^{\mu} \gamma^{\sigma}\left(\Lambda^{-1}\right)_{\mu}^{\nu} \partial_{\nu}-m\right] \psi(x)= \\
S\left[i \delta_{\sigma}^{\nu} \gamma^{\sigma} \partial_{\nu}-m\right] \psi(x)= \\
S\left[i \gamma^{\nu} \partial_{\nu}-m\right] \psi(x)=0 \rightarrow \\
\left(i \gamma^{\nu} \partial_{\nu}-m\right) \psi(x)=0 \tag{7}
\end{array}
$$

We have shown that the Dirac equation is Lorentz invariant.
2. For $\psi^{\dagger}(x) \psi(x)$:

$$
\begin{equation*}
\psi^{\dagger}(x) \psi(x) \rightarrow \psi^{\dagger}(x) S^{\dagger} S \psi(x) \tag{8}
\end{equation*}
$$

This quantity is not Lorentz invariant, since $S^{\dagger} \neq S^{-1}(S$ is not unitary). We now evaluate the transformation $\bar{\psi}(x) \psi(x)$:

$$
\begin{equation*}
\bar{\psi}(x) \psi(x) \rightarrow \psi^{\dagger}(x) S^{\dagger} \gamma^{0} S \psi(x) \tag{9}
\end{equation*}
$$

This can be done by rearranging the identity

$$
\begin{equation*}
S^{-1}=\gamma^{0} S^{\dagger} \gamma^{0} \tag{10}
\end{equation*}
$$

by multpilying it from the right and left by γ^{0} :

$$
\begin{equation*}
\gamma^{0} S^{-1} \gamma^{0}=S^{\dagger} \tag{11}
\end{equation*}
$$

Then Eq. (9) can be written as:

$$
\begin{array}{r}
\bar{\psi}(x) \psi(x) \rightarrow \psi^{\dagger} \gamma^{0} S^{-1} \gamma^{0} \gamma^{0} S \psi(x)= \\
=\psi^{\dagger} \gamma^{0} S^{-1} S \psi(x)=\bar{\psi}(x) \psi(x) \tag{12}
\end{array}
$$

So $\bar{\psi}(x) \psi(x)$ is Lorentz invariant provided the anti-commutation relations of the γ^{μ} matrices and given Eq. (10).
3. Choose the following representation for the γ^{μ} matrices:

$$
\begin{gather*}
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{13}\\
\gamma^{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right) \tag{14}
\end{gather*}
$$

Here σ_{k} are the Pauli spin matrices. In matrix form and using natural units, the Dirac equation in this representation is:

$$
\left(\begin{array}{cc}
i \frac{\partial}{\partial x^{0}}-m & i \frac{\partial}{\partial x^{j}} \sigma_{j} \tag{15}\\
-i \frac{\partial}{\partial x^{j}} \sigma_{j} & -i \frac{\partial}{\partial x^{0}}-m
\end{array}\right) \psi(x)=0
$$

Assume the plane wave solution $\psi(x)=u_{r}(\mathbf{p}) \mathrm{e}^{-i p x}$. At this stage, in order to have a general solution, we allow both positive and negative energies $\left(p_{0}\right)$ in the exponent. Below this notation is used: $\sigma_{j} p_{j}=$ $-\sigma \cdot \mathbf{p}$, with the - sign originating from $\eta^{i j}=-1$, employed to raise the index of p_{j}. Equation (15) then becomes:

$$
\left(\begin{array}{cc}
E-m & -\sigma \cdot \mathbf{p} \tag{16}\\
\sigma \cdot \mathbf{p} & -E-m
\end{array}\right) u_{r}(\mathbf{p}) \mathrm{e}^{-i p x}=0
$$

The sign on E has contributions from i^{2} and from the minus sign in the exponent. For the space-derivatives, there is a + sign in the exponent,
hence the relative sign change for the off-diagonal terms. A non-trivial solution only exists if the determinant of the matrix is zero:

$$
\begin{equation*}
-(E-m)(E+m)+(\sigma \cdot \mathbf{p})^{2}=0 \tag{17}
\end{equation*}
$$

The following identity is used to evaluate this expression:

$$
\begin{equation*}
(\sigma \cdot \mathbf{p})^{2}=|\mathbf{p}|^{2} \tag{18}
\end{equation*}
$$

It can be derived with the by now familar trick:

$$
\begin{gather*}
(\sigma \cdot \mathbf{p})^{2}=\sigma_{i} p_{i} \sigma_{j} p_{j}=\frac{1}{2}\left(\sigma_{i} p_{i} \sigma_{j} p_{j}+\sigma_{j} p_{j} \sigma_{i} p_{i}\right)= \\
\quad=\frac{1}{2} p_{i} p_{j}\left[\sigma_{i}, \sigma_{j}\right]_{+}=\frac{1}{2} p_{i} p_{j} 2 \delta_{i j}=p_{i} p_{i}=|\mathbf{p}|^{2} \tag{19}
\end{gather*}
$$

So, from setting the determinant to zero, we get

$$
\begin{equation*}
-E^{2}+m^{2}+|\mathbf{p}|^{2}=0 \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
E= \pm \sqrt{m^{2}+|\mathbf{p}|^{2}}= \pm E_{\mathbf{p}} \tag{21}
\end{equation*}
$$

First solve for the positive energy $E=+E_{\mathbf{p}}$. Write $u_{r}(\mathbf{p})$ on the form:

$$
\begin{equation*}
u_{r}(\mathbf{p})=\binom{\phi}{\chi} \tag{22}
\end{equation*}
$$

where ϕ and χ have two components each. Choosing the second row in Eq. (16) gives:

$$
\begin{equation*}
(\sigma \cdot \mathbf{p}) \phi-\left(E_{\mathbf{p}}+m\right) \chi=0 \tag{23}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\chi=\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \phi \tag{24}
\end{equation*}
$$

Then the solution is of the form:

$$
\begin{equation*}
u_{r}(\mathbf{p})=N\binom{\phi}{\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \phi} \tag{25}
\end{equation*}
$$

where N is the normalization. Two orhogonal solutions that satisty this condition can be constructed (one for $r=1$ and one for $r=2$).
Now we look at the negative energy solutions $v_{r}(\mathbf{p})=u_{r}\left(-E_{\mathbf{p}},-\mathbf{p}\right)$ that appear in the combination $\psi=v_{r}(\mathbf{p}) \mathrm{e}^{i p x}$. For this, the solution
$E=-E_{\mathbf{p}}$ and the replacement $\mathbf{p} \rightarrow-\mathbf{p}$ in Eq. (16) are used. This time choosing the first row of the modified Eq. (16) then gives:

$$
\begin{equation*}
-\left(E_{\mathbf{p}}+m\right) \phi+\sigma \cdot \mathbf{p} \chi=0 \rightarrow \phi=\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \chi \tag{26}
\end{equation*}
$$

So,

$$
\begin{equation*}
v_{r}(\mathbf{p})=N\binom{\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \chi}{\chi} \tag{27}
\end{equation*}
$$

Again, we can choose orthogonal (and orthonormal) solutions for $v_{r}(\mathbf{p})$. In the non-relativistic limit $\mathbf{p} \rightarrow 0, u_{r}(\mathbf{p})$ can be described by the top two components (ϕ) while $v_{r}(\mathbf{p})$ can be described by the bottom two components (χ). In the ultrarelativistic limit, however, $m \sim 0$, $E_{\mathbf{p}} \sim|\mathbf{p}|$ and the contributions from ϕ and χ is equally large to both $u_{r}(\mathbf{p})$ and $v_{r}(\mathbf{p})$.
The normalization N can be found by normalizing $\bar{u}_{r}(\mathbf{p}) u_{s}(\mathbf{p})=\delta_{r s}$, $\bar{v}_{r}(\mathbf{p}) v_{s}(\mathbf{p})=-\delta_{r s}$, choosing $\phi_{r}^{\dagger} \phi_{s}=\chi_{r}^{\dagger} \chi_{s}=\delta_{r s}$ and using the explicit form of γ^{0} to write $\bar{u}_{r}(\mathbf{p})$ as $u_{r}^{\dagger}(\mathbf{p}) \gamma^{0}$ and $\bar{v}_{r}(\mathbf{p})$ as $v_{r}^{\dagger}(\mathbf{p}) \gamma_{0}$. The result is $N=\sqrt{\frac{E_{\mathrm{p}}+m}{2 m}}$.
Using the explicit forms of $\bar{u}_{r}(\mathbf{p}), u_{r}(\mathbf{p})$ and γ^{0}, as written above, one arrives at

$$
\begin{equation*}
1=\bar{u}_{r}(\mathbf{p}) u_{r}(\mathbf{p})=N^{2}\left(\phi^{\dagger} \phi-\left(\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m}\right)^{2} \phi^{\dagger} \phi\right) \tag{28}
\end{equation*}
$$

Using the relation shown in Eq. (37),

$$
\begin{equation*}
N^{2}=\frac{1}{1-\frac{\left(E_{\mathbf{p}}+m\right)\left(E_{\mathbf{p}}-m\right)}{\left(E_{\mathbf{p}}+m\right)^{2}}}=\frac{E_{\mathbf{p}}+m}{E_{\mathbf{p}}+m-E_{\mathbf{p}}+m}=\frac{E_{\mathbf{p}}+m}{2 m} \tag{29}
\end{equation*}
$$

4. We have

$$
\begin{equation*}
\Lambda_{ \pm}(\mathrm{p})=\frac{ \pm p+m}{2 m} \tag{30}
\end{equation*}
$$

Compute $\Lambda_{ \pm}(\mathrm{p})^{2}$:

$$
\begin{equation*}
\Lambda_{+}(\mathrm{p})^{2}=\frac{(\not p+m)^{2}}{(2 m)^{2}}=\frac{\not p^{2}+2 \not p m+m^{2}}{4 m^{2}} \tag{31}
\end{equation*}
$$

Use $\not p^{2}=p^{2}=m^{2}$:

$$
\begin{equation*}
\Lambda_{+}(\mathrm{p})^{2}=\frac{2 m^{2}+2 \not p m}{4 m^{2}}=\frac{2 m(\not p+m)}{4 m^{2}}=\frac{\not p+m}{2 m}=\Lambda_{+}(\mathrm{p}) . \tag{32}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\Lambda_{-}(\mathrm{p})^{2}=\frac{(-\not p+m)^{2}}{(2 m)^{2}}=\frac{\left(m^{2}-2 \not p m+m\right)^{2}}{4 m^{2}}=\frac{-\not p+m}{2 m}=\Lambda_{-}(\mathrm{p}) \tag{33}
\end{equation*}
$$

Now compute $\Lambda_{+}(\mathrm{p}) \Lambda_{-}(\mathrm{p})$:

$$
\begin{equation*}
\Lambda_{+}(\mathrm{p}) \Lambda_{-}(\mathrm{p})=\frac{\not p+m}{2 m} \cdot \frac{-\not p+m}{2 m}=\frac{m^{2}-\not p^{2}}{4 m^{2}}=0 \tag{34}
\end{equation*}
$$

We have shown that $\Lambda_{ \pm}(\mathrm{p})^{2}=\Lambda_{ \pm}(\mathrm{p})$ and that $\Lambda_{+}(\mathrm{p}) \Lambda_{-}(\mathrm{p})=0$, as it should be for projection operators. These projection operators are used to separate the positive energy and negative energy solutions from linear combinations of the four solutions $u_{r}(\mathbf{p}), v_{r}(\mathbf{p})$.
5. We are to show that $\sum u_{r}(\mathbf{p}) \bar{u}_{r}(\mathbf{p})=\frac{\not p+m}{2 m}$ and $\sum v_{r}(\mathbf{p}) \bar{v}_{r}(\mathbf{p})=\frac{\not p-m}{2 m}$. We are to use the explicit form for $u_{r}(\mathbf{p})$ found in excercise 4 (before choosing the coordinate system), the same convention for the γ^{μ} matrices and $\left(\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m}\right)^{\dagger}=\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m}$. The outer product of the spinors is evaluated:

$$
\begin{gather*}
\sum_{r=1}^{2} u_{r}(\mathbf{p}) \bar{u}_{r}(\mathbf{p})=\sum_{r=1}^{2} N^{2}\binom{\phi_{r}}{\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \phi_{r}}\left(\begin{array}{cc}
\phi_{r}^{\dagger} & \phi_{r}^{\dagger} \frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)= \\
=\frac{E_{\mathbf{p}}+m}{2 m} \sum_{r=1}^{2}\left(\begin{array}{cc}
\phi_{r} \phi_{r}^{\dagger} & -\phi_{r} \phi_{r}^{\dagger} \frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \\
\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \phi_{r} \phi_{r}^{\dagger} & -\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \phi_{r} \phi_{r}^{\dagger} \frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m}
\end{array}\right) \tag{35}
\end{gather*}
$$

Using completeness relations $\phi_{1} \phi_{1}^{\dagger}+\phi_{2} \phi_{2}^{\dagger}=I_{2}$ (outer product) gives

$$
\begin{gather*}
\sum_{r} u_{r}(\mathbf{p}) \bar{u}_{r}(\mathbf{p})=\frac{E_{\mathbf{p}}+m}{2 m}\left(\begin{array}{cc}
1 & -\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \\
\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} & -\frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \frac{\sigma \cdot \mathbf{p}}{E_{\mathbf{p}}+m}
\end{array}\right)= \\
=\frac{1}{2 m}\left(\begin{array}{cc}
E_{\mathbf{p}}+m & -\sigma \cdot \mathbf{p} \\
\sigma \cdot \mathbf{p} & -\left(E_{\mathbf{p}}-m\right)
\end{array}\right)=\frac{1}{2 m}\left(\begin{array}{cc}
E_{\mathbf{p}}+m & -\sigma \cdot \mathbf{p} \\
\sigma \cdot \mathbf{p} & -E_{\mathbf{p}}+m
\end{array}\right) . \tag{36}
\end{gather*}
$$

The following has been used to simplify the expression for the element on row 2 , column 2 :

$$
\begin{equation*}
\sigma \cdot \mathbf{p} \cdot \sigma \cdot \mathbf{p}=|\mathbf{p}|^{2}=E_{\mathbf{p}}^{2}-m^{2}=\left(E_{\mathbf{p}}+m\right)\left(E_{\mathbf{p}}-m\right) \tag{37}
\end{equation*}
$$

Using the representation of γ^{μ} as defined above,

$$
\begin{equation*}
\sum_{r} u_{r}(\mathbf{p}) \bar{u}_{r}(\mathbf{p})=\frac{\not p+m}{2 m} \tag{38}
\end{equation*}
$$

In a similar way, it can be found that

$$
\begin{equation*}
\sum_{r} v_{r}(\mathbf{p}) \bar{v}_{r}(\mathbf{p})=\frac{\not p-m}{2 m} \tag{39}
\end{equation*}
$$

These properties are frequently used in computing cross sections.
Note: $\bar{u}_{r}(\mathbf{p}) u_{r}(\mathbf{p})$ (row x column vector) is shorthand notation for the inner product $\bar{u}_{r}(\mathbf{p})_{\alpha} u_{r}(\mathbf{p})^{\alpha}$, which gives a number. $u_{r}(\mathbf{p}) \bar{u}_{r}(\mathbf{p})$ (column x row vector) is shorthand notation for the outer product $u_{r}(\mathbf{p})_{\alpha} \bar{u}_{r}(\mathbf{p})_{\beta}$, which gives a matrix. Using this formalism, the RHS also gets indices $\left(\frac{p-m}{2 m}\right)_{\alpha \beta}$. The indices α and β give the components of the matrix.

If you write out the indices α, β, the order is not important, that is $\bar{u}_{r}(\mathbf{p})_{\alpha} u_{r}(\mathbf{p})_{\beta}=u_{r}(\mathbf{p})_{\beta} \bar{u}_{r}(\mathbf{p})_{\alpha}$. Contraction over the same index denotes the scalar product: $\bar{u}_{r}(\mathbf{p})_{\alpha} u_{r}(\mathbf{p})^{\alpha}=u_{r}(\mathbf{p})^{\alpha} \bar{u}_{r}(\mathbf{p})_{\alpha}=$ just one component. If you drop these indices, however (as above), the order is important.
6. To show that the Dirac equation satisfies the Klein-Gordon equation, multiply the Dirac equation from the left by the complex conjugate of the quantity within the parenthesis:

$$
\begin{equation*}
\left(-i \gamma^{\nu} \partial_{\nu}-m\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 \tag{40}
\end{equation*}
$$

Evaluating the LHS and equating it to the RHS:

$$
\begin{array}{r}
L H S=\left(\gamma^{\nu} \gamma^{\mu} \partial_{\mu} \partial_{\nu}+m^{2}\right) \psi(x)=\left(\partial_{\mu} \partial_{\nu} \frac{1}{2}\left(\gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu}\right)\right. \\
\left(\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}+m^{2}\right) \psi(x)=\left(\partial^{2}+m^{2}\right) \psi(x)=0 \tag{41}
\end{array}
$$

It has been used that $\partial \mu, \partial \nu$ commute and the dummy indices have been renamed one of the terms, together with anticommutation properties for γ matrices. Thus, we get back the Klein-Gordon equation.

7. Hint rather than problem

The property $u_{r}{ }^{\dagger}(\mathbf{p}) v_{s}(-\mathbf{p})=0$ can be useful when evaluation expressions containing the Dirac field. If you get something similar, see if you can manipulate the expression to bring it to the desired form.

