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1. We have the Dirac equation

[ih̄γµ∂µ −mc]ψ(x) = 0 . (1)

The left hand side of the Dirac equation under transformation becomes

[iγµ(Λ−1)νµ∂ν −m]Sψ(x) = (2)

= SS−1[iγµ(Λ−1)νµ∂ν −m]Sψ(x) . (3)

Since S is constant, it can be moved through the partial derivative.
The matrix S acts on spinors while (Λ−1)νµ acts on spacetime, so these
two matrices commute and we can rewrite the expression as:

LHS = S[iS−1γµS(Λ−1)νµ∂ν −m]ψ(x) . (4)

We now rearragne the expression

γν = ΛνµSγ
µS−1 (5)

by multiplying it by S−1 from the left and by S from the right, giving:

S−1γνS = Λνµγ
µ (6)

Then

LHS = S[iΛµσγ
σ(Λ−1)νµ∂ν −m]ψ(x) =

S[iδνσγ
σ∂ν −m]ψ(x) =

S[iγν∂ν −m]ψ(x) = 0 →
(iγν∂ν −m)ψ(x) = 0 (7)

We have shown that the Dirac equation is Lorentz invariant.

2. For ψ†(x)ψ(x):

ψ†(x)ψ(x)→ ψ†(x)S†Sψ(x) . (8)
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This quantity is not Lorentz invariant, since S† 6= S−1 (S is not uni-
tary). We now evaluate the transformation ψ̄(x)ψ(x):

ψ̄(x)ψ(x)→ ψ†(x)S†γ0Sψ(x) . (9)

This can be done by rearranging the identity

S−1 = γ0S†γ0 (10)

by multpilying it from the right and left by γ0:

γ0S−1γ0 = S†. (11)

Then Eq. (9) can be written as:

ψ̄(x)ψ(x)→ ψ†γ0S−1γ0γ0Sψ(x) =

= ψ†γ0S−1Sψ(x) = ψ̄(x)ψ(x) . (12)

So ψ̄(x)ψ(x) is Lorentz invariant provided the anti-commutation rela-
tions of the γµ matrices and given Eq. (10).

3. Choose the following representation for the γµ matrices:

γ0 =

(
1 0
0 −1

)
(13)

γk =

(
0 σk
−σk 0

)
(14)

Here σk are the Pauli spin matrices. In matrix form and using natural
units, the Dirac equation in this representation is:(

i ∂
∂x0
−m i ∂

∂xj
σj

−i ∂
∂xj

σj −i ∂
∂x0
−m

)
ψ(x) = 0 . (15)

Assume the plane wave solution ψ(x) = ur(p)e−ipx. At this stage, in
order to have a general solution, we allow both positive and negative
energies (p0) in the exponent. Below this notation is used: σjpj =
−σ · p, with the - sign originating from ηij = −1, employed to raise
the index of pj . Equation (15) then becomes:(

E −m −σ · p
σ · p −E −m

)
ur(p)e−ipx = 0 . (16)

The sign on E has contributions from i2 and from the minus sign in the
exponent. For the space-derivatives, there is a + sign in the exponent,
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hence the relative sign change for the off-diagonal terms. A non-trivial
solution only exists if the determinant of the matrix is zero:

−(E −m)(E +m) + (σ · p)2 = 0 . (17)

The following identity is used to evaluate this expression:

(σ · p)2 = |p|2. (18)

It can be derived with the by now familar trick:

(σ · p)2 = σipiσjpj =
1

2
(σipiσjpj + σjpjσipi) =

=
1

2
pipj [σi, σj ]+ =

1

2
pipj2δij = pipi = |p|2. (19)

So, from setting the determinant to zero, we get

−E2 +m2 + |p|2 = 0 , (20)

or

E = ±
√
m2 + |p|2 = ±Ep . (21)

First solve for the positive energy E = +Ep. Write ur(p) on the form:

ur(p) =

(
φ
χ

)
, (22)

where φ and χ have two components each. Choosing the second row
in Eq. (16) gives:

(σ · p)φ− (Ep +m)χ = 0 , (23)

which gives

χ =
σ · p

Ep +m
φ . (24)

Then the solution is of the form:

ur(p) = N

(
φ

σ·p
Ep+m

φ

)
, (25)

where N is the normalization. Two orhogonal solutions that satisty
this condition can be constructed (one for r = 1 and one for r = 2).

Now we look at the negative energy solutions vr(p) = ur(−Ep,−p)
that appear in the combination ψ = vr(p)eipx. For this, the solution
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E = −Ep and the replacement p → −p in Eq. (16) are used. This
time choosing the first row of the modified Eq. (16) then gives:

−(Ep +m)φ+ σ · pχ = 0→ φ =
σ · p

Ep +m
χ . (26)

So,

vr(p) = N

( σ·p
Ep+m

χ

χ

)
(27)

Again, we can choose orthogonal (and orthonormal) solutions for vr(p).

In the non-relativistic limit p → 0, ur(p) can be described by the
top two components (φ) while vr(p) can be described by the bottom
two components (χ). In the ultrarelativistic limit, however, m ∼ 0,
Ep ∼ |p| and the contributions from φ and χ is equally large to both
ur(p) and vr(p).

The normalization N can be found by normalizing ūr(p)us(p) = δrs,

v̄r(p)vs(p) = −δrs, choosing φ†rφs = χ†rχs = δrs and using the explicit

form of γ0 to write ūr(p) as u†r(p)γ0 and v̄r(p) as v†r(p)γ0. The result

is N =
√

Ep+m
2m .

Using the explicit forms of ūr(p), ur(p) and γ0, as written above, one
arrives at

1 = ūr(p)ur(p) = N2(φ†φ−
(

σ · p
Ep +m

)2

φ†φ) (28)

Using the relation shown in Eq. (37),

N2 =
1

1− (Ep+m)(Ep−m)
(Ep+m)2

=
Ep +m

Ep +m− Ep +m
=
Ep +m

2m
(29)

4. We have

Λ±(p) =
±/p+m

2m
(30)

Compute Λ±(p)2:

Λ+(p)2 =
(/p+m)2

(2m)2
=
/p2 + 2/pm+m2

4m2
. (31)

Use /p2 = p2 = m2:

Λ+(p)2 =
2m2 + 2/pm

4m2
=

2m(/p+m)

4m2
=
/p+m

2m
= Λ+(p) . (32)
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Similarly,

Λ−(p)2 =
(−/p+m)2

(2m)2
=

(m2 − 2/pm+m)2

4m2
=
−/p+m

2m
= Λ−(p) . (33)

Now compute Λ+(p)Λ−(p):

Λ+(p)Λ−(p) =
/p+m

2m
·
−/p+m

2m
=
m2 − /p2

4m2
= 0 . (34)

We have shown that Λ±(p)2 = Λ±(p) and that Λ+(p)Λ−(p) = 0, as
it should be for projection operators. These projection operators are
used to separate the positive energy and negative energy solutions from
linear combinations of the four solutions ur(p), vr(p).

5. We are to show that
∑
ur(p)ūr(p) = /p+m

2m and
∑
vr(p)v̄r(p) = /p−m

2m .

We are to use the explicit form for ur(p) found in excercise 4 (before
choosing the coordinate system), the same convention for the γµ ma-
trices and ( σ·p

Ep+m
)† = σ·p

Ep+m
. The outer product of the spinors is

evaluated:

2∑
r=1

ur(p)ūr(p) =
2∑
r=1

N2

(
φr
σ·p

Ep+m
φr

)(
φ†r φ†r

σ·p
Ep+m

)( 1 0
0 −1

)
=

=
Ep +m

2m

2∑
r=1

(
φrφ

†
r −φrφ†r σ·p

Ep+m
σ·p

Ep+m
φrφ

†
r − σ·p

Ep+m
φrφ

†
r

σ·p
Ep+m

)
(35)

Using completeness relations φ1φ
†
1 + φ2φ

†
2 = I2 (outer product) gives

∑
r

ur(p)ūr(p) =
Ep +m

2m

(
1 − σ·p

Ep+m
σ·p

Ep+m
− σ·p
Ep+m

σ·p
Ep+m

)
=

=
1

2m

(
Ep +m −σ · p
σ · p −(Ep −m)

)
=

1

2m

(
Ep +m −σ · p
σ · p −Ep +m

)
.

(36)
The following has been used to simplify the expression for the element
on row 2, column 2:

σ · p · σ · p = |p|2 = E2
p −m2 = (Ep +m)(Ep −m) . (37)

Using the representation of γµ as defined above,∑
r

ur(p)ūr(p) =
/p+m

2m
. (38)
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In a similar way, it can be found that∑
r

vr(p)v̄r(p) =
/p−m

2m
. (39)

These properties are frequently used in computing cross sections.

Note: ūr(p)ur(p) (row x column vector) is shorthand notation for
the inner product ūr(p)αur(p)α, which gives a number. ur(p)ūr(p)
(column x row vector) is shorthand notation for the outer product
ur(p)αūr(p)β, which gives a matrix. Using this formalism, the RHS

also gets indices
(
/p−m
2m

)
αβ

. The indices α and β give the components

of the matrix.

If you write out the indices α, β, the order is not important, that
is ūr(p)αur(p)β = ur(p)βūr(p)α. Contraction over the same index
denotes the scalar product: ūr(p)αur(p)α = ur(p)αūr(p)α = just one
component. If you drop these indices, however (as above), the order
is important.

6. To show that the Dirac equation satisfies the Klein-Gordon equation,
multiply the Dirac equation from the left by the complex conjugate of
the quantity within the parenthesis:

(−iγν∂ν −m)(iγµ∂µ −m)ψ(x) = 0 . (40)

Evaluating the LHS and equating it to the RHS:

LHS = (γνγµ∂µ∂ν +m2)ψ(x) = (∂µ∂ν
1

2
(γνγµ + γµγν)

(ηµν∂µ∂ν +m2)ψ(x) = (∂2 +m2)ψ(x) = 0 (41)

It has been used that ∂µ, ∂ν commute and the dummy indices have
been renamed one of the terms, together with anticommutation prop-
erties for γ matrices. Thus, we get back the Klein-Gordon equation.

7. Hint rather than problem

The property ur
†(p)vs(−p) = 0 can be useful when evaluation expres-

sions containing the Dirac field. If you get something similar, see if
you can manipulate the expression to bring it to the desired form.
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