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1. We have the Dirac equation
[ih"9, — melih(z) = 0. 1)
The left hand side of the Dirac equation under transformation becomes

[in" (A~} 0, — m] St (x) = (2)
=SS [in"(A™1);0, — m]Sy(z). (3)

Since S is constant, it can be moved through the partial derivative.
The matrix S acts on spinors while (Afl)/’j acts on spacetime, so these
two matrices commute and we can rewrite the expression as:

LHS = S[iS™ " S(A™")10, — mjy(x) . (4)
We now rearragne the expression
7 = ALSysT (5)
by multiplying it by S~! from the left and by S from the right, giving:
SIS = A (6)
Then

LHS = S[iA*y7 (A™)40, — m]y(z) =
S[idg~° 0y — mly(x) =
Sliy” 0, —mlyp(z) =0 —

)

(i778y — m)ip(x) = 0 (7)

We have shown that the Dirac equation is Lorentz invariant.
2. For ot (x)y(x):
Ui (@) (x) = o7 (2)ST Sy (x) . (8)



This quantity is not Lorentz invariant, sinceﬁSJr # S~ (S is not uni-
tary). We now evaluate the transformation ¢ (x)y(x):

P(e)i (@) = ¢! (2)ST S (). (9)
This can be done by rearranging the identity
S =7"51" (10)
by multpilying it from the right and left by ~°:
7087140 = 8T, (11)
Then Eq. (9) can be written as:
D(a)(x) = T8I0 5Y (x) =
= 905715y (2) = Pla)y (). (12)

So 1(z)y(x) is Lorentz invariant provided the anti-commutation rela-
tions of the v* matrices and given Eq. (10).

. Choose the following representation for the v* matrices:

=5 %) (13)

e G (14

Here oy, are the Pauli spin matrices. In matrix form and using natural
units, the Dirac equation in this representation is:

(Zag‘)a_m 5% )wx)—o. (15)

Tl92705  Tloe0 T

Assume the plane wave solution 1 (z) = u,(p)e P*. At this stage, in
order to have a general solution, we allow both positive and negative
energies (po) in the exponent. Below this notation is used: o;p; =

—0 - p, with the - sign originating from 1" = —1, employed to raise
the index of p;. Equation (15) then becomes:
E-m —o-p —ipr _
(50 0 Jume —o. (16)

The sign on E has contributions from 3% and from the minus sign in the
exponent. For the space-derivatives, there is a + sign in the exponent,



hence the relative sign change for the off-diagonal terms. A non-trivial
solution only exists if the determinant of the matrix is zero:

—(E—-m)(E4+m)+ (6-p)?=0. (17)
The following identity is used to evaluate this expression:
(o-p)*=1Ip” (18)
It can be derived with the by now familar trick:

2 1
(0-p)” =opiojpj = i(gipio'jpj +ojpjoipi) =

1 1
= ipipj[ai,tfjh = 51%]9;'25@‘]‘ = pipi = |p|*. (19)

So, from setting the determinant to zero, we get
—E*+m*+p[*=0, (20)
or
E=+ym?+|p|?==xEp. (21)

First solve for the positive energy E = +E,. Write u,(p) on the form:

wwr= (7). (22)

X

where ¢ and y have two components each. Choosing the second row
in Eq. (16) gives:

(0-p)p— (Ep+m)x =0, (23)
which gives
o-p
=— > . 24
X Ep+m¢ (24)

Then the solution is of the form:

ww) =N (o ) (25)

Ep+m

where N is the normalization. Two orhogonal solutions that satisty
this condition can be constructed (one for r = 1 and one for r = 2).

Now we look at the negative energy solutions v,(p) = u,(—Ep, —p)
that appear in the combination 1) = v,(p)e’*. For this, the solution



E = —FE} and the replacement p — —p in Eq. (16) are used. This
time choosing the first row of the modified Eq. (16) then gives:

_ I
(Ep+m)¢+a-px—0—>¢—Ep+mx. (26)
So,
op Y
() = (B ) (27)

Again, we can choose orthogonal (and orthonormal) solutions for v, (p).

In the non-relativistic limit p — 0, u,(p) can be described by the
top two components (¢) while v,.(p) can be described by the bottom
two components (x). In the ultrarelativistic limit, however, m ~ 0,
E, ~ |p| and the contributions from ¢ and x is equally large to both
ur(p) and vr(p).

The normalization N can be found by normalizing @, (p)us(p) = dys,
U (p)vs(p) = —drs, choosing qﬁlqﬁs = XiXs = 4,5 and using the explicit

form of 40 to write @,(p) as ui(p)vo and v,(p) as vi(p)%. The result

. _ [ Ep+m
lSN— “om  *

Using the explicit forms of @, (p), u.(p) and 7°, as written above, one
arrives at

2
L=, (p)ur (p) = N*(¢'0 - (E‘;fm> 6'¢) (28)

Using the relation shown in Eq. (37),

1 Ep+m _Ep+m

N? = = = (29)
1= (Ep&?¥ff))z;m) Ep +m—Ep+m 2m
. We have
tp+m
M) = (30)
Compute A (p)?:
2 (p+m)? B P* + 2pm + m?
A+(p) - (2m)2 - Am?2 : (31)
Use ],7)2 =p? =m?:
2m? +2pm  2m(p+m +m
Mo = 2 L2m_2nPAm) Py ). (3)

4m?2 4m? 2m



Similarly,

(—p+m)* _ (m® = 2pm +m)? _ptm

T A (). (33)
Now compute Ay (p)A_(p):
m —p+m  m?—p?
M)A (p) = PFm TR _m (34)

2m 2m 4m

We have shown that A4(p)? = A+(p) and that A, (p)A_(p) = 0, as
it should be for projection operators. These projection operators are
used to separate the positive energy and negative energy solutions from
linear combinations of the four solutions u,(p), v,(p).

. We are to show that > u,(p)u,(p) = T—mm and Y v.(p)vy(p) = yjz_—mm
We are to use the explicit form for u,(p) found in excercise 4 (before
choosing the coordinate system), the same convention for the v* ma-
trices and (+:ZB-)f = _ZP_ The outer product of the spinors is

Ep+m — Ep+m-

evaluated: ? ?
2 2

_ Or t .t o 1 0

ur(p)ur(p) = N? ( o ( br Or g ) =
7«21 Zl FytmOr RN
2 i _ f_op
 Ep+m 5 ( b1 o1 Sl 5B ) (35)
- o- t o t o
2m r=1 Ep—lr-)m ¢"’¢7’ - Ep—&I—)m ¢T¢T Epfm

Using completeness relations ¢1¢J{ + ¢2¢£ = I» (outer product) gives

B E,+m 1 — U'pm
Zur(p)ur(p): ° < U-§p+o-p )Z

r 2m Eme " Ept+m Eptm
1 [ Ep+m —0-p 1 (Ep+m —o-p
2m\ o-p —(Ep—-m)) 2m\ o-p —Ep+m )’

(36)
The following has been used to simplify the expression for the element
on row 2, column 2:

cop-o-p=Ip’=El—m’=(Ep+m)(Bp—m).  (37)
Using the representation of v# as defined above,

_;Z)—i-m
om

> u(p)iir(p) (38)



In a similar way, it can be found that

S u e =L (39)

2m
-
These properties are frequently used in computing cross sections.

Note: u,(p)u,(p) (row x column vector) is shorthand notation for

the inner product @, (p)aur(p)%, which gives a number. w,(p)u,(p)

(column x row vector) is shorthand notation for the outer product

ur(P)aty(P)g, which gives a matrix. Using this formalism, the RHS

also gets indices (%) 5 The indices o and § give the components
(63

of the matrix.
If you write out the indices «, 3, the order is not important, that
is ur(p)atr(P)g = ur(P)gtr(P)a. Contraction over the same index
denotes the scalar product: @, (p)at,(p)® = ur(pP)*ur(P)a = just one
component. If you drop these indices, however (as above), the order
is important.

. To show that the Dirac equation satisfies the Klein-Gordon equation,
multiply the Dirac equation from the left by the complex conjugate of
the quantity within the parenthesis:

(—in* B, —m) (i7", — m)h(x) = 0. (40)

Evaluating the LHS and equating it to the RHS:

1
LHS = (44" 0u0y +m*)(z) = (04005 (77" +7"7")
(" 0y + m*)ip(x) = (0* + m*)ip(x) =0 (41)
It has been used that Ou, dv commute and the dummy indices have
been renamed one of the terms, together with anticommutation prop-
erties for v matrices. Thus, we get back the Klein-Gordon equation.
. Hint rather than problem

The property u,f(p)vs(—p) = 0 can be useful when evaluation expres-
sions containing the Dirac field. If you get something similar, see if
you can manipulate the expression to bring it to the desired form.



