
Tutorial 9

Topics

• The Schrödinger, Heisenberg and Interaction Pictures

• Perturbation Expansion of the S-Matrix

• Wick’s Theorem

1 The Pictures:
Schrödinger, Heisenberg and Interaction

References: Section 1.5 on p. 20 in Mandl and Shaw, Section 2.2 on p. 80 in Sakuari,
Section 5.5 on p. 336 in Sakurai

The Schrödinger, Heisenberg and Interaction pictures are three different ways of describ-
ing the time development of a system. Quantities in these three pictures are often distin-
guished by the labels ‘S’, ‘H’ and ‘I’ (N.b. the roman upright letters).

The Heisenberg picture (HP) and the Schrödinger picture (SP) differ only by a basis
change with respect to time-dependency, which is the difference between active and passive
transformations. Time dependence is ascribed to quantum states in the Schrödinger
picture and to operators in the Heisenberg picture. In the interaction picture (IP), a
complicated Hamiltonian H has a natural decomposition into a simple “free” Hamiltonian
H0 and a perturbation in form of the potential Hint. The following table summarizes how
states and observales change with respect to different pictures:

Schrödinger
picture

Heisenberg picture Interaction picture

State ket
Evolution

determined by H
No change

Evolution
determined by Hint

Observable No change
Evolution

determined by H
Evolution

determined by H0

Until now we have treated the free-fields (i.e. non-interacting fields) using the Heisenberg
picture, in which state vectors are constant in time and the operators carry the full time
dependence. Here we shall employ the interaction picture which leads to two essential
simplifications:

Firstly, in the IP, the operators satisfy the Heisenberg-like equations of motion, but
involving the free Hamiltonian H0 only, not the complete Hamiltonian H. Secondly, if
the interaction Lagrangian density Lint does not involve derivatives, the fields canonically
conjugate to the interacting fields and to the free fields are identical. Since the IP and
the HP are related by a unitary transformation, it follows that in the IP, the interacting
fields satisfy the same commutation relations as the free fields.
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In the interaction picture in general, the system is described by a time-dependent
state vector |Φ(t)〉I, which satisfies the equation of motion

i d
dt |Φ(t)〉I = H I

int(t) |Φ(t)〉I , MS(6.12)

where the interaction Hamiltonian in the IP reads

H I
int(t) = eiH0(t−t0)HS

inte−iH0(t−t0)

Herein HS
I and H I

0 = HS
0 are the interaction and free-field Hamiltonians in the Schrödinger

picture, respectively.
Let O be a field operator (e.g. φ, ψ, Aµ...) and |Φ(t)〉I be a state (the configuration

of all the fields is inside |Φ(t)〉I.) In the interaction picture we have:

i d
dtO

I(t) = [OI(t), H I
0], equivalent to the free-field equations,

i d
dt |Φ(t)〉I = H I

int(t) |Φ(t)〉I , governs evolution of states,

|Φ(t0)〉S = |Φ(t0)〉H = |Φ(t0)〉I .

• At t = t0 → −∞, we have the initial state |i〉 = |Φ(−∞)〉I.

• At t → ∞, we have all the possible final states as |Φ(∞)〉I. Note that this is not
the same as the particular final state |f〉 that we are interested in (|f〉 is only the
part of |Φ(∞)〉I; the latter can be very complicated at high energy collisions, even
starting with very simple |i〉 = |Φ(−∞)〉I).

The solution, in general, can be written as:

|Φ(∞)〉I = S |Φ(−∞)〉I , |Φ(∞)〉I = S |i〉 ,

where S is obtained by solving

i d
dt |Φ(t)〉I = H I

int(t) |Φ(t)〉I .

Consider a scattering process from some initial particles |i〉, we get some final particles
as |f〉. The projection of the final state |f〉 in the all possible final states is given by

〈f |Φ(t0)〉 .

This is the contribution of |f〉 in |Φ(∞)〉I. Thus, the probability that |Φ(∞)〉I contains
the final state |f〉 is given by,

|〈f |Φ(t0)〉|2 = |〈f |S|i〉|2 .
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The matrix S is called the scattering matrix, and has the matrix elements

Sfi = 〈f |S|i〉 .

We want to compute the elements of the scattering matrix (S -matrix). If we started
from 〈i|i〉 = 1, we want also I 〈Φ(∞)|Φ(∞)〉 I = 1 , meaning that

〈
f
∣∣∣S†S∣∣∣i〉 = 1, i.e. the

S -matrix must be unitary matrix, S†S = 1̂.1

Now, consider the Lagrangian density of QED which reads [with the normal order-
ing assumed!

LQED = iψ̄ (γµDµψ −m)ψ − 1
4FµνF

µν , Dµ = ∂µ + iqAµ.

The Lagrangian density can be written [see also MS Eqs. (4.66)-(4.68), (11.8b)]

L = iψ̄γµ∂µψ −mψ̄ψ︸ ︷︷ ︸
LD

0

−1
4FµνF

µν︸ ︷︷ ︸
LM

0︸ ︷︷ ︸
L0 = LD

0 + LM
0

−qψ̄γµAµψ︸ ︷︷ ︸
Lint = −sµAµ

, MS(6.9)

that is, it can be split into the free-field piece L0 = LD
0 + LM

0 and the interaction piece
Lint

L = L0 + Lint, L0 = iψ̄γµ∂µψ −mψ̄ψ −
1
4FµνF

µν , MS(6.8)

Lint = −qψ̄γµAµψ = eψ̄ /Aψ ,

sµ = qψ̄γµψ = −eψ̄γµψ.

N.b. q = −e for electrons! After going to Hamiltonian formalism, we have the canonical
momenta as before we had for L0, since

∂LI

∂ψ̇
= 0, and ∂LI

∂Ȧµ
= 0,

Consequently the Hamiltonian reads

H =
ˆ

d3x
(
πaφ̇a − L

)
= H0 +Hint , MS(6.11)

Hint =
ˆ

d3xHint, where Hint = −Lint .

or explicitly, with the normal ordering

HI
int = qN

[
ψ̄γµAµψ

]
I = −eN

[
ψ̄ /Aψ

]
I , MS(6.24)

1Sometimes it is not obvious that S-matrix is unitary. We can use unitarity to deduce some properties
of the evolution equations.

FK8027 QFT Tutorial 3 (13)



2 Perturbation Expansion of the S-matrix

(See also 4.2 Perturbation Expansion of Correlation Functions in Peskin and Schroeder)

S =
∞∑
n=0

(−i)n
tn=∞ˆ
−∞

dtn−1

tn−1ˆ
−∞

dtn−2 . . .

t2ˆ
−∞

dt1
t1ˆ

−∞

dt0
[
H I

int(tn−1) . . . H I
int(t1)H I

int(t0)
]

In the above expression for the S-matrix, the structure of the integral ensures tn ≥
tn−1 ≥ · · · ≥ t1 ≥ t0, that is, the product H I

int(tn−1) . . . H I
int(t1)H I

int(t0) is automatically
time ordered.

To simplify integration, we can change the upper integration bound to be all ∞ by
imposing time ordering of the integrand. In such case, we are covering n!-times the
same volume dnx; this we compensate by introducing the factor 1/n!

S =
∞∑
n=0

(−i)n
n!

∞̂

−∞

dtn−1

∞̂

−∞

dtn−2 . . .

∞̂

−∞

dt1
∞̂

−∞

dt0T
{
H I

int(tn−1) . . . H I
int(t1)H I

int(t0)
}

The above integrals are from lecture notes. The equivalent integrals from M&S are,

S =
∞∑
n=0

(−i)n
∞̂

−∞

dt1
t1ˆ

−∞

dt2 . . .
tn−1ˆ
−∞

dtn
[
H I

int(t1)H I
int(t2) . . . H I

int(tn)
]

MS(6.22a)

S =
∞∑
n=0

(−i)n
n!

∞̂

−∞

dt1
∞̂

−∞

dt2 . . .
∞̂

−∞

dtnT
{
H I

int(t1)H I
int(t2) . . . H I

int(tn)
}

MS(6.22b)

Now, to obtain the explicitly covariant S -matrix expansion, we rewrite the integral in
terms of the interaction Hamiltonian density,

S =
∞∑
n=0

(−i)n
n!

ˆ
d4x1

ˆ
d4x2 . . .

ˆ
d4xnT {HI(x1)HI(x2) . . .HI(xn)} , MS(6.23)

where the S -matrix in the last line is given as the sum of the various perturbation orders
of S(n), which, by taking HI

int(x) = −LI
int(x) can be rewritten more nicely in terms of

Lagrangian densities (Eq. (7.1) in M&S),

S =
∞∑
n=0

S(n), S(n) = in
n!

ˆ
d4x1

ˆ
d4x2 . . .

ˆ
d4xnT

{
LI

int(x1)LI
int(x2) . . .LI

int(xn)
}

where, (note φI are the solutions to the free-theory),

LI
int(x) := Lint[φI](x).
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For example, for QED,

HI
int(x) = −eN

[
ψ̄(x) /A(x)ψ(x)

]I
MS(7.2)

= −eN
[(
ψ̄+ + ψ̄−

)
x

(
/A

+ + /A
−)

x

(
ψ+ + ψ−

)
x

]I
The last interaction gives rise to eight basic processes, e.g. the term N(ψ̄+A−ψ+)x corre-
sponds to the annihilation of an electron-positron pair with the creation of a photon at
x. The individual positive/negative frequency operators are summarized in the following
table.

Table 1: Operators figuring in HI
int(x) = −eN

[
ψ̄(x) /A(x)ψ(x)

]I

A(x) A+(x) photon absorption γ εµr (k) ar(k) e−ikx

A−(x) creation γ εµr (k) a†r(k) eikx

ψ(x) ψ+(x) electron absorption e− urα(p) cr(p) e−ipx/~

ψ−(x) positron creation e+ vrα(p) d†r(p) eipx/~

ψ̄(x) ψ̄+(x) positron absorption e+ v̄rα(p) dr(p) e−ipx/~

ψ̄−(x) electron creation e− ūrα(p) c†r(p) eipx/~

We can use Wick’s theorem for writing the time-orderd terms in an S -matrix expan-
sion as a sum of normal products.

Note: The n-th order term n the S-matrix expansion contains a factor 1/n! and n

integration variables x1, ..., xn. These are only summation variables and can be attached
to the n vertices of a given Feynman graph in n ways. We can omit the factor 1/n! if we
consider only topologically different Feynman diagrams, i.e. diagrams which differ only
in the labelling of vertices are considered the same.
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3 Wick’s Theorem

Wick’s theorem is essential in evaluating scattering amplitudes and S-matrix expansions.
The theorem is simple to state.

The basic ingredients are: (1) T {. . . }, (2) N (. . . ) and (3) AB.

1. The first is the time ordering operator T {. . . }

T {A (x)B (y)} = θ (x0 − y0)A (x)B (y) + θ (y0 − x0)B (y)A (x) .

If A and B are fermions, there is a minus sign instead of a plus sign in between.

2. N (AB) is the normal ordering, such that

N (AB) = A−B+ + A−B− + A+B+ +B−A+ .

Here we expanded the field in positive and negative frequency parts, as A = A++A−

and B = B+ +B−, where A+ |0〉 = 0.
For two operators, the following relation holds:

AB = N (AB) +
[
A+, B−

]

3. The last object AB is a contraction between the field A and B, defined as,

AB := 〈0|T {AB}|0〉 .

This object is i times the propagator, which is ∆F (x− y) for Klein-Gordon bosons,
SF (x− y) for Dirac fermions and DF (x− y) for vector bosons2.

Wick’s theorem states that for any two operators,

T {AB} = N (AB) + AB . (3.1)

We can verify this by taking the vacuum expectation value on both sides of (3.1). We see
that 〈0|AB |0〉 = AB, and that 〈0|N (AB)|0〉 = 0 verifies (3.1). For three operators, the
expansion is,

T {ABC} = N (ABC) + N(ABC) + N(ABC) + N(ABC) . (3.2)

We see that it is the normal ordering and all possible ways of doing contractions between

2In perturbation theory, usually we want to calculate the two-point correlation function, or two-point
Green’s function, 〈Ω|T{A(x)B(y)}|Ω〉 where |Ω〉 is the ground state of the interacting theory, which is
different from |0〉. The correlation function can be interpreted physically as the amplitude for propagation
of a particle or excitation between y and x. In the free theory, it is simply the Feynman propagator
〈0|T{A(x)B(y)}|0〉Free.
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the different terms. For 4 operators we similarly have,

T {ABCD} = N (ABCD) + N(ABCD) + N(ABCD) + N(ABCD)

+N(ABCD) + N(ABCD) + N(ABCD)

+N(ABCD) + N(ABCD) + N(ABCD). (3.3)

As we can see it is not only single contractions that are taken. All possible ways of making
all possible number of contractions should be considered. Now the contractions are just
complex numbers so we can move them out of the normal ordering. However doing to
we need to keep track of how many other operators are passed to create the contraction.
For bosons this is unimportant, but for fermions we need to add a minus sign for every
passed operators. Thus, if ABCD are all bosons, we can write (3.3) as,

T {ABCD} = N (ABCD) + N (CD)AB + N (BD)AC + N (BC)AD

+N (AD)BC + N (AC)BD + N (AB)CD

+ABCD + ACBD + ADBC (3.4)

whereas for ABCD all fermions we would get,

T {ABCD} = N (ABCD) + N (CD)AB − N (BD)AC + N (BC)AD

+N (AD)BC − N (AC)BD + N (AB)CD

+ABCD − ACBD + ADBC. (3.5)

Finally, note that contracted things are not measurable.

3.1 Filtering Contractions

Of course, not all kins of operators have valid contractions. In fact only if A contains
operators that to not commute with operators in B, will the contraction exist.

For instance for a boson φ and a fermion ψ we have

φψ = 0 .

The same goes for bosons of different types φ, ϕ,

φϕ = 0 .

Also for fermions we have,
ψψ = ψ̄ψ̄ = 0 .
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Contractions that survive are,

φφ = i∆F, neutral scalar bosons,

φ?φ = φφ? = i∆F, charged scalar bosons,

ψψ̄ = −ψ̄ψ = iSF, fermions,

AA = iDF, vector bosons.

With this in mind, what are the Wick expansions of,

T
{
φxψ̄y

}
, T

{
φxψ̄yψz

}
, T {φxφyψz} , T {φx1φx2φx3} , T {ϕx1ϕx2φy1φy2} ?

Here Ox ≡ O (x), and also φ and ϕ are neutral bosons. For instance, the last expression
expands

T {ϕx1ϕx2φy1φy2} = N(ϕx1ϕx2φy1φy2) + N(φy1φy2)ϕx1ϕx2

+N(ϕx1ϕx2)φy1φy2 + ϕx1ϕx2φy1φy2

so only 4 out of 9 terms survived.

3.2 Time Ordering of Normal Ordered Products

Now, since the time ordered produces we encounter will come from an expansion of the
operator

S = T
{
ei
´
d4xHI(x)

}
,

where HI (x) is some normal ordered interaction term. In QED H = ieN
(
ψ̄ /Aψ

)
, and in

φ4 theory it would be H = λ
4!N (φ4). This will give time ordered products of the type,

T {H(x) · H(y) · · · · · H(z)} .

In these cases, there is an extension to Wicks theorem that states that only contractions
between different groups of normal ordered operators need to be considered.

As an example we have,

T {N (AB) · N (CD)} = N (ABCD) + N(AB · CD) + N(AB · CD)

+N(AB · CD) + N(AB · CD)

+N(AB · CD) ,
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3.3 The Second Order Terms S(2) in QED

We now turn to the more physical situation of

T
{

N(ψ̄x /Axψx) · N(ψ̄y /Ayψy)
}
.

This is the second order expansion of the QED interaction,

S(2) = i2
2!

ˆ
d4xd4yT

{
eN(ψ̄x /Axψx) · eN(ψ̄y /Ayψy)

}
= −e

2

2

ˆ
d4xd4yT

{
N(ψ̄x /Axψx) N(ψ̄y /Ayψy)

}

S(2) =
F∑
i=A

S
(2)
i MS(7.4)

Lets find all terms contained in this sum. With the corresponding S -matrix element
boxed, we have,

T
{

N(ψ̄x /Axψx) · N(ψ̄y /Ayψy)
}

= MS(7.5)

S
(2)
A N(ψ̄x /Axψxψ̄y /Ayψy)

1-contractions: S
(2)
B + N(ψ̄x /Axψxψ̄y /Ayψy)

S
(2)
B + N(ψ̄x /Axψxψ̄y /Ayψy)

S
(2)
C + N(ψ̄x /Axψxψ̄y /Ayψy)

2-contractions: S
(2)
D + N(ψ̄x /Axψxψ̄y /Ayψy)

S
(2)
D + N(ψ̄x /Axψxψ̄y /Ayψy)

S
(2)
E + N(ψ̄x /Axψxψ̄y /Ayψy)

3 -contractions: S
(2)
F + N(ψ̄x /Axψxψ̄y /Ayψy) .

In terms of Feynman diagrams: These should be interpreted as:

N(ψ̄x /Axψxψ̄y /Ayψy) ∼ D
x
g� × D

y
g�

This represents the creation and/or annihilation of two fermions and a photon, at two
disconnected and unrelated places in the universe. At this level, the directions of the
different legs are not determined. This is since all three of ψ̄, ψ and /A all contain both
positive an negative frequency parts: This mean that particles can both be created an
destroyed at the point x. Thus one of these diagrams contains a total of 8 processes:
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Dg� contains: Dg� Dg� �g� �g�DgD DgD �gD �gD
Figure 1: Processes of ψ̄x /Axψx in the configuration space at the position x

3.3.1 1 -contractions S(2)
B , S(2)

C

N(ψ̄x /Axψxψ̄y /Ayψy) ∼ � �
x
�

yu v
N(ψ̄x /Axψxψ̄y /Ayψy) ∼ D E

x
F

yu v
These two diagrams are the same only that the direction of charge is running in different
directions. These can represent electron-photon scattering, but also electron-positron
annihilation into two photons is determined by this diagram.

N(ψ̄x /Axψxψ̄y /Ayψy) ∼ D E
x
g

y� �
This diagram is mainly electron-electron scattering and electron-positron scattering. The
diagram written is electron-positron scattering by fusing to an intermediate virtual pho-
ton.

3.3.2 2 -contractions S(2)
D , S(2)

E

N(ψ̄x /Axψxψ̄y /Ayψy) ∼ �
x
�yf

y
�

N(ψ̄x /Axψxψ̄y /Ayψy) ∼ F
x
Fyf

y
F

These diagrams are fermions propagating in opposite directions, else the same. We cannot
observe (distinguish) these two from�f} andFf}, respectively. However,
we can measure their effect as they contribute to the mass of the electron (the process
is called self-energy corrections). Loops give infinities and this infinities are added to the
bare (unphysical) mass of the electron (= the electron mass you put into the theory is
called bare mass and it’s unphysical). The calculated mass is ‘real’ measured mass.

N(ψ̄x /Axψxψ̄y /Ayψy) ∼ g
x
`ln`

y
g
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This is a photon propagator. The photon self-energy does not produce the mass because
we have the gauge invariant theory.

All of these terms represent higher order contributions to the bare propagatorsF
andg. It is the business of renormalization3 to account for these propagator in a
correct manner. In this course, we shall mostly do things without loops.

3.3.3 3 -contractions S(2)
F

N(ψ̄x /Axψxψ̄y /Ayψy) ∼
x
glng

y

This is a vacuum bubble. It has no external legs, so it does not contribute to any scattering
diagrams (except those where nothing happens at all).

The vacuum bubbles are important in other parts of the theory.

4 A note on Feynman Diagrams
and the Summary Factor

The following examples are stolen from Peskin and Schroeder, Section 4.3.
Now, consider the φ4 theory with the interaction term

LI = − λ4!φ
4

having the Hamiltonian

H = H0 +HI = HKG +
ˆ

d3x
λ

4!φ
4(x).

As we have seen, Wick’s theorem allows us to turn any expression of the form

〈0|T{φ(x1)φ(x2) · · ·φ(xn)}|0〉

into a sum of products of Feynman propagators.

T{φ(x1)φ(x2) · · ·φ(xn)} =
= N{φ(x1)φ(x2) · · ·φ(xn) + all possible contractions }

In particular (denoting φi ≡ φ(xi))

3Regularization: we render infinities to become finite. Renormalization: we remove infinities (reassign
values to masses, charges). Running couplings and masses: they are studied in the subject “renormal-
ization group equations” (Wilson RG equations, got Nobel prize for this work). QFT and statistical
mechanics are unified by Wilson RG (explains the real physics behind QFT).
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Now, consider our case of four fields all at different spacetime points. Let us represent
each of the points x1 through x4 by a node, and each factor DF (x− y) by a line joining
x to y. Then the last equation can be represented as the sum of three diagrams (the
configuration-space Feynman diagrams)

Things get more interesting when the expression contains more than one field at the
same spacetime point.

〈0|T
{
φ(x)φ(y) (−i)

ˆ
dt
ˆ

d3z
λ

4!φ
4
}
|0〉 =

= 〈0|T
{
φ(x)φ(y) (−i λ4!)

ˆ
dt
ˆ

d3zφ(z)φ(z)φ(z)φ(z)
}
|0〉

Now, apply Wick’s theorem. We get one term for every way of contracting the six φ

operators with each other in pairs. There are 15 ways to do this, but (fortunately) only
two of them are really different. If we contract φ(x) with φ(y), then there are three ways
to contract the four φ(z)’s with each other, and all three give identical expressions. The
other possibility is to contract φ(x) with one of the φ(z) (four choices), φ(y) with one
of the others (three choices), and the remaining two φ(z)’s with each other (one choice).
There are twelve ways to do this, and all give identical expressions. Thus we have:

〈0|T
{
φ(x)φ(y) (−i)

ˆ
dt
ˆ

d3z
λ

4!φ
4
}
|0〉 =

= 3× (−i λ4!)DF(x− y)
ˆ

d4z DF(z − z)DF(z − z) +

+ 12× (−i λ4!)
ˆ

d4z DF(x− z)DF(y − z)DF(z − z)
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The Summary Factor. In practice one always draws the diagram first, using it as a
mnemonic device for writing down the analytic expression. But then the question arises.
What is the overall constant? We could, of course, work it out as above: We could
associate a factor (−iλ/n!)

´
dz4 with each vertex, put in the 1/n! from the Taylor series,

and then do the combinatorics by writing out the product of fields and counting. But
the 1/n! from the Taylor series will almost always cancel the n! from interchanging the
vertices, so we can just forget about both of these factors. Furthermore, the generic
vertex has four lines coming in from four different places, so the various placements of
these contractions into φφφφ generates a factor of 4!, which cancels the denominator in
(−iλ/4!). It is therefore conventional to associate the expression (−iλ)

´
dz4 with each

vertex. (This was the reason for the factor of 4! in the φ4 coupling, i.e., λφ4/4!)
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