Tutorial 11

FK8027 - Quantum Field Theory

Monday 28" January, 2019

Topics for today

e The relativistic definition of flux
e The cross section

e The spin-sums lemma

e ¢ et production in electromagnetic field

1 The relativistic definition of flux
In M&S, the differential cross-section is defined in eq. (8.8) to be

_w Vd3pf
do = EH 7(2703 , (1)

d|S |2
[l , and the flux of the

particles in the initial state ¢. Equivalently, we can define the cross-section
as [LLHT75, p. 34]

where we assume to know the rate of events w =

AN = c¢dVdt, (2)

where dNV is the number of events in dV'd¢. In non-relativistic mechanics,
the flux is equal to

¢ = N1N2Vrel, (3)

where nq and ny are the number densities of the particles and v, is the
modulus of the relative velocity between them, i.e.,

Urel = |771 - 772| (4)

We need to extend the definition of the flux to the relativistic case. This
is not trivial as it can seem, because dw must be invariant under Lorentz
transformations, and both n; and the relativistic v, are not. However,, if
the target particles are at rest, then we do not have to compose any velocity
and vy = |U1]. In this case, then, the classical formula can be directly
extended,

dN = oninovedVdt, (5)


https://books.google.se/books?id=X18PF4oKyrUC
https://books.google.se/books?id=X18PF4oKyrUC

with the relativistic v = |01]. We need an expression which reduces to
(5) when the target is at rest, and is Lorentz invariant. Suppose that this
expression can be written as,

dN = (Aning) dVdt. (6)

We know that dVdt = d*z is invariant under Lorentz transformations, and
dN, being a pure number, is invariant as well. This implies that Anins has
to be invariant. Let’s see how n; transforms under a Lorentz transformation.

The number of particles in a given volume is a Lorentz invariant, so we
have

ndV = n'dV’, (7)

where the primes indicate quantities in the new coordinates. We know, from
the length contraction, that the volume transforms as
_dv

av’ : 8
5 (8)

where we introduced the relativistic v factor. Therefore,

ndV = n/dV’ = n'ﬂ = n' = yn. 9)
Y

Hence, the quantity Aning can be written as

Ey Ey

Aning = Ayindyony = A== =03, 10

1n2 YinyY2mng mymy L2 (10)

where n9, ny are the number densities in the rest frames of the targets and

the projectiles, respectively. Now nY,ny, m1, mo are invariant under Lorentz

transformations, se we want to impose that AFE;FEs is invariant as well. In

addition, if AEyEs is an invariant, such is AE;Ey/ (py'pay), since pi'pa, is
itself an invariant. Let’s call it I,

| _ABEy, AP
© o phipoy E\Ey —p1 - D’

(11)

Let’s go to the rest frame of particle 2, i.e., p5 = 0,

AElTnQ
I = —-— A_ 12
T (12)

We know from (5) that in this frame we should get o], therefore we have
determined the invariant I,

I = ovye, (13)



which does not change under Lorentz transformations. It follows that

A= PP _ P
E\E;  EiEs

OUrel, (14)

and

o
pp
dN = oV Ell;}z ninodVdt. (15)

At this point we need to determine the relativistic v,. The following
formulas hold in special relativity [LLHT75, p. 35], [Canl7], [Tsal0, Sec. 6.4],

2 1
2 2.2
v 12[(19“172) —mm] T
re 1P2u 1M .~
1/2 1
= [(171 —3)? = (51 A 172)2] s (16a)
Pipop = E1Ez (1 =01 - ), (16b)
which imply
2 1/2 1
(17a)
LS S § V2 1/2
EEs [(U1 — U2)2 — (U1 A v2)2] = [(pﬁtp2#)2 — m%mg] . (17b)

This formula show that eq. (8.9) in M&S in not precise. They are calling

1/2
Urel the quantity [(171 — %)? = (T1 A 172)2] , which is not the relativistic
relative velocity. We call this quantity vsep, the “separation” between the
relativistic velocities (it reduces to the relative velocity in the non-relativistic
case),

= - — — \2 — - \2 1/2
Vsep = (1 — U - U2) Upel = [(vl — U9)" — (U] A U) ] . (18)

Using these formulas, one obtains,

dN prZu
= oy dvdt
mns VB E;
1/2 1 E\Ey (1 — ) - 1)
L L2 o 2 11402 1" U2
= - - dvdt
o [(“1 %)" = (T A B2) ] 1— 3, -9 E1 B>
L2 o] Y2
=0 [(vl — U9)® — (U] A ) ] dVdt = ovgepdVdt. (19)
We now can finally define the relativistic flux as follows
i - o
j EiEy (1 —v1-v
dN = avrelElliggmnngdt e (ElEQ L) npavt
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=0 [n1n2 (1 - 171 . 172) Urel] dth, (20)
¢ = ning (1 — Ty - V2) Urel = N1N2 Vsep a0 N1M2Vrel, (21)
which is what we are looking for, compatibly with (5).

You can easily accept that the quantity v., in M&S cannot be a rela-
tivistic relative velocity if you look at eq. (8.10a), which can become grater
than 1 very easily (see also [Wei05, pp. 137-139]). Hence, eq. (8.9) in M&S
is correct if we replace the subscript “rel” with “sep”. To quote [TsalO,
p. 169], “in Special Relativity nothing is obvious and everything has to be
calculated explicitly”.!

At this point, we can define a four-vector J; for the particle i as [Can17]

di = (ni,niv), (22)
such that the flux is given by,
¢ = (J1 - J2) Vrel = ning (1 — Uy - V2) Vyel- (23)

As the last comment, we note that for collinear particles 07 A o = 0,
hence the relative velocity is just

|Ul - 772| _ Usep

Urel =

(24)

1—0 -0y 1—0 -0
M&S are considering collinear particles, indeed vgep, in (24) is the same as
in egs. (8.10a)-(8.10b) in M&S.

2 The cross-section

On the previous tutorial, we computed some Feynman amplitudes. The
final prediction in QFT, however, is not a Feynman amplitude, but rather
a cross-section. Let’s consider a process in which two particles in the initial
state interact and produce two particles in the final state. We have

pi = (Ei,pi), i=1.2, (25a)
pj = (E;,p;), j=1.2 (25b)

Let’s also suppose that the particles are in a definite polarization or spin
state, so we do not have to sum over them. Also, we now consider the process
happening within a finite region of space V in a finite amount of time 7T
This changes the normalizations of the fields. Under these assumptions, the
matrix element can be written as,

. [ 1 |1
Spi = (f| S|y =~ dp + (2m)%0 (ij — Epi> i/ 5o 1L QVE‘H“/ng M,
J i ! J
(26)

Tmagine in General Relativity, and so on...
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where M is the Feynman amplitude. The ~ sign is there because the delta
function changes in a finite volume and finite time. Namely,

T/2 ,
(27)45 ij —Zpi = lim dtJ d3xelfﬂ(2f Py—3;pi)
J i v J-r2 Jv
= lim o7y (ij - Zm) : (27)
V—w J )

Therefore, we must replace (27)49 (Zj Pi— 2 pi) with dpy (Z] Pi— > pi)
in our expressions.

Now, the transition probability from [i) to |f) is [Sy;
relativistic quantum mechanics. Hence, the rate of transition is equal to

|2, as in non-

|Sil®

w="—r (28)
At this point, we face a mathematical problem. Since Sy; has a ¢ inside
it, its square will have the square of the § distribution. The product of
any two distribution is mathematically ill-defined. How to deal with this
problem? First of all, let’s notice that we run into it because of an over-
simplification. We consider particles with exactly determined momenta,
and this is non-physical due to the Heinsenberg uncertainty principle and
to the finite resolution of any observation. To get the meaningful cross-
section, one should consider wave-packets in the initial and final states, i.e.,
states with momenta that can range within a finite interval. However, the
treatment becomes more complicated if one uses wave-packets, hence we
use the exactly known momenta, but we have to pay the price for this, i.e.,
we need to pursue a non-rigorous treatment where we deal with the (non-
existing) quantity “6%(p)”. We now “compute” the square of the Dirac delta
by means of a “trick”,

/2 gt .
4452(1))77 _ lim 14f delem:lp
nioe Jom (2m)* Jv,
/2 dt,

lim
4

Ty—ow | 2

o T2/2( ) Va

d3zqei®2P

T1/2 T2/2 eip(m1+x2)
= lim lim dtlf dtg dgl’lf d3x27. (29)
i Va

; . 8
T1—w To—w J_p /9 —T5/2 21w
Vl —00 VQ—)CD 1/ 2/ ( )



Now we make the change of variables z = x1 + 9, dx = dxs in the integral
labeled with 2,

T /2 t1+T2/2 elpz
“62(p)” = lim lim de dtJ dgmlf Pz
T1—0 To—w0 —T1/2 t1—To/2 Vi Vi+Va (271')

Vi—ow Vo—oo

(30)

Now we take the limits 15, Vo — oo first,

T1/2 o0 ip$
“0*(p)” = lim J dt14 f d’ay U dtf d3$64]
T >0 —T1/2 (271') %] —0 space (277)

Vi—w
. i(p)
= lm [TiVi] 2 (31)

Vi—owo

At this point, we claim that the physical process happens in the finite time
Ty and in the finite volume V7, hence we can neglect the limits 77, V3 — 0.
In the light of this, in our expression we will use the formula

(2m)*“6%(p)” ~ TaV1 6(p), (32)
which in terms of 7y becomes
(2m)%“6%(p)” = TiVidrv (p). (33)

This allows us to write

w= %(2@86 (ij - 2p>n (75 ) ™ (g5 ) e 2me) o
27r 15 (ZP; ZZ%) (2VE > I1; <2X/1E]) I, (2my) | M|
<Zpg Z%) <2VE ) I1; (WlEJ) I, (2my) | M.

(34)

This is the transition rate to a final state with exact final momenta. Now, we
know that we will always have some uncertainty in measuring the momenta,
so it makes sense to consider momenta in the interval (ps,ps + dpy). We

know that, in a discretized system (finite volume), the density of states is
Vv

3
(2m)?
group of final states, per unit incident flux of particles in the initial state.

Use . . .
—® " where Usep 18 the separation velocity

“differential cross section” is the transition rate into this

The incident flux is ¢ = NVgep, =

of the colliding particles. We have,

do = E Vd3pj

6 2y




1 d3p
= @) { Ypr = Y | T 2m) T | it ) [V
(2m) fpf P | 1B\ Eyveey ¢ (2my) J((27r)32Ej>| |

1
- 64712 vgep E1 E2 B EY) (He2me) |M|25 (pll Ml o pz) d?’p/ldgplg,
(35)
if the particles move collinearly. In this case it holds
1/2
E1E2Uscp = [(p1p2)2 - m%m%] / . (36)

Two important frames in which the particles move collinearly are the center
of mass frame (COM) and the laboratory frame (LAB).
The COM frame is defined by p; = —po and so

|ﬁ1| |ﬁ2| Bl + Es
= - _— = —— 37
vsep = po g, P R, (37)
In the LAB frame, one particle is at rest, so p» = 0 and
|D1]
'Usep = E (38)

The last step to make the differential cross-section observable is to re-
move the last delta, which is not observable. We then need to integrate over
the final momenta, because they can be arbitrary as long as they respect
energy—momentum conservation (guaranteed by the delta). We perform the
integration over p_’; first,

1
do = d3 / Jd.?) / 11,2 M 26 / /o o
o D1 D2 642 v0nep B B2 B B (IT,2my) | M| (p1 +DPy— D1 P2)
1 -
= 1,2my) |M|?5 (B} + EY — By — Fy) |p)|2dp,dQ’
(39)
where in the last step we used
d®p = [p12d|pldQ = |p|EAEdQ = |p|EAE sin(h)dfde, (40)

which corresponds to going to spherical coordinates in the momentum space.
We now integrate over pj. This will kill the last delta and leave us with an
observable quantity. We use the formula

[ttt tae = [ st (5)

_ Sy
@)




to get,

1
6472050y E1 Eo B B

- El EI -1
do (e2m) e Pasy | SEEED] )

Remind that p_” 9 =P1+ P2 — p_” 1 from energy-momentum conservation. In
the COM frame, we have

- 0 (E} + EY) E, + E
E/2 — 2 712 St S 2 PV -1t 43
Hence, in the COM we obtain
do 1 /
1L 17, 20m,) 1. (44)

A ooy 6472(E1 + E2)? p1]

This is the observable quantity that can be compared with the scattering
experiments.

Now we compute the differential cross-section in the LAB. One particle
is stationary, so

Po=0, pa=FEy=my. (45)

We start again from

S O(E, + B
do = fhali Pasy | S (16)
1|
. 1 . I
with f(p},ph) = I B\ B (IT,2my) |M|?. The relative velocity in
the lab frame is vgep = |§11| Substituting into do we get
d 1 S (B, + BT
Wy~ ol am) i Past | S5
LAB 6472 LB\ By B B P
Eq
1 |p’1|2

o(E, + E)]™
(I1,2my) |M2deY [W] . (47

Now we compute the partial derivative. We know that

" 64m2EEY [p1|ma

EP = |JY;'1|2 +mi, B = |Z;'2|2 +m3. (48)

Conservation of four-momentum gives us p; + p2 = p} + ph, which implies

2

2 -
= |7 + || =215 [P cos(@). (49)

=
D1

=
Po

= W
Pog=p1—p1 =



It follows

- 12 - |2 -

Eizm | E;:\/mg+|ﬁ1|2+ | = 21511 [, | cos@). (50)
Now we can compute the partial derivatives

aEI 1 L2 _1/2 R ‘pll‘ ‘pll‘

(e

0B 1 Lo 15 o |9 AN

3 L 5 (m% + g+ | — 215 P cos(QI)) (2 P — 2P COSW))
Pl

P'1| = B cos(®)

= . 1b

Hence we get,

S(E By || [P = Bilcos®) (Bl + ER)|p| - B 15| cos(@)
anl B F - E| B}
(Ey + Eo) /| — Ef |pi]cos(€') (B +m2) |p1| — B} 1| cos(6')
B EE, B E\E, '
(52)
The cross-section in the LAB is then
~ 2
d 1 1
Lap - 047 ma (B 4 o) || — B |5y cos(e) 1P
(53)

3 The spin-sums lemma

The spin-sums lemma, or Casimir’s trick, is the following statement,

3 (7) Ave (3) (3 (7) B 3) = ﬁ T ((f +m) A(p—m)B),

(54)

where A and B are matrices built out of 4 matrices, and B = 70 BT40.
The proof follows,

> (@ (7) Avy (7)) (@ (7) By (7))

r,r!



= > @ (7) Ave () (2 (7) V"B upr (7)) (55)

Now we rewrite the same object in spinorial index notation (so far we have
been using the matrix notation),

Z (@ (7)1 Arror ) (00 i er Blar v (D))

/

_Z U (7)) 5 Ty () AUZ vy () 5 Or )(WKLBLMVMN>

_ (¥ +m p-—m 0 pf 0
—( om NIAU om » (VKLBLM’YMN>

2m om

- ﬁTr((ﬁwm)A(p—m) ')

= T ((f +m) A(p-m) B). (56)

In the second equality in (56), we used the expressions for the projectors
onto the positive and negative energy states for the Dirac spinors,?

PRCEAC (572)
Yo e 6 - -E (57

4 e e production in electromagnetic field
We consider the following initial and final states

[iy =100, 1) = cf () dl () |0), (58)
and an electromagnetic field of the form

A, = (0,0,ae7",0), (59a)

2Did you prove these formulas after the tutorial on the Dirac equation?
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Al = A, = (0,0,7%245,0) = (0,0, —ae™“",0). (59b)

We consider the first-order S-matrix in QED,
(IS iy = f 45 (@) Az (@)
ie 4 -

271' degjdqld% Eg

<0|CT (vi) d [ (@) Ty (a )em] (—72ae™") [di, (@) vy (qa)eiqﬂ] 0)

B 271' \/>\/E>2Jd4xur i ’)/2’03( ) —ip1z+ipar—iwt

E ')

— o (2 605 — 73 (B + By =) () 20 ).
(60)

The Feynman amplitude is
M = —ieaw, (pi) y2vs (p2) - (61)

We are not assuming any definite polarization for the particles in the final
state, so we must sum over the polarizations of the final state

|J\/[|2 = —ii(ea)2 Zﬂr (p1) y2vs (3) Us (13) Y2ur (51)

- m A +m 62(12
>Tr (QO 72p/2m ’YQ) =12 [Tr (]7&’}’2]7172) —m?Tr (y27?)] .

(62)

Here we use the “Casimir’s trick”, proved in the next section. We now make
use of the following relations

Tr( @ 5) =%, Tr(odd # of v) = 0,
Tr (vavﬁ Yy ) =4 (77“6 0?0 — neInP 4 P ) - (63)
We get,

Tr (poyemin?) = 4 (p2up1n) (020 — 00’2 + 120" 2)
= 4{(p2)2(p1)* — (P2)u(P1)™ + (p1)2(p2)?]
= —4[(p2)2(p1)2 + (p2)u(p1)" + (p1)2(p2)2] - (64)

Explicitly, the momenta are given by

(p1)" = (En, [pi]sin(8) cos(¢), [pi] sin(6) sin(¢), |pi| cos(6)) , (652)
(p2)"" = (B2, —|p2|sin(6) cos(¢), —|pa| sin(0) sin(¢), —[pa| cos(#)) .~ (65b)
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It follows,
Tr (phy2min®) = 4[—21p2|1pi | sin(9)? sin(¢)® + E1 By — pi -p3] . (66)
Also, Tr (7272) = 49?2 = 4. The Feynman amplitude squared becomes,

e2a’

M2 = S8 [ByEs + [pillp3] + m?® — 203l sin(0)* sin(9)?] . (67)

This concludes the computation of the amplitude. We now turn to the
d*p1d®py

(20

. Now let’s consider the part of Sy; which is not in M and call it R.

computation of the differential cross-section do = wV , with w =

|Sil?
1 m  (2m)*

R = i VBB, @rypo P2 ~ POE £ By —w), (68)

which implies

m? (2m)8

|R” =
V2E1E2 (27‘(’)6(27{')4

6(p2 — p1)o(E2 + Er — w), (69)

where (27)3 — V because of the finite limit assumption. Then we have,
[Spil* = MR, (70)

and

e2a? 1

- (0 = )O(Es + Ey — w)-
do E1E2(27r)26(p2 p1)0(Es + B — w)

[ EvEs + |pi||p3] + m? — 2|p3||pi | sin(0)? sin(¢)?] d*prd’pe.  (71)

We now need to integrate over pa,

2a% §(2E; — w) . L2 . :
do = (271')2 E12 [E% + |pl| + m2 - 2|pl|2 3111(9)2 Sln(¢)2] d3p1
€2Q2

= W‘S(El —w/2) [2E% — 2(E? —m?)sin(9)? sin(¢)2] d3py, (72)

where we used d(ax) = §(z)/|a|. Now we integrate over pi by using

2/p1d]7]
E=+|p2+m?2=dE =12 — pdE = |p|d|p|, (73a
Vi e pdlAl.  (73a)

d*p = p|*d[pldQ = |p|EAEAQ = |p|EAE sin(0)d0de. (73b)

The cross-section then is,

ao il |p1 —w/2) [2E2 — 2(E? — m?) sin(8)? sin(¢)?]

dE;
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€2a2 T 27 w —m
_ f d0 sin(0) J d¢\/T [02/2 — 2(w?/4 — m?) sin(6)? sin(6)?]

0 0
(74)
Since
J sin(0)3d6 = 4/3, (75a)
0
21
f sin(¢)%d¢ =, (75b)
0
f sin(#)dé = 2, (75¢)
0
we get
202 A/w2/4 — m2 4
og=1 wi/A—m 7rw2—77r(w2/4—m2)
(2m)? w 3
2,2 J2/h — m2
_CONVATIT o ). (76)
3T w
This is meaningful only if,
2 o
% >m? = w > 2m W py > om. (77)

The process can happen only if the energy provided by the external electro-
magnetic field is larger than or equal to the sum of the masses of the final
particles. However, for the equality ¢ is defined, but it is zero.
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