
Tutorial 13

FK8027 - Quantum Field Theory

Monday 11th February, 2019

Topics for today

• Propagating degrees of freedom for spin-1 fields

• Weak SU(2) isospin charges

1 Propagating degrees of freedom for spin-1 fields

Massive spin-1 field. In the previous tutorial we derived the Proca equa-
tion for a massive spin-1 field starting from the Lagrangian density

L = −1

4
FµνF

µν +
1

2
m2
WW

µWµ (1)

with Fµν := ∂µW ν − ∂νWµ, analogously to the Maxwell tensor for the
electromagnetic field. The Proca equation results in

�Wµ +m2
WW

µ = 0, (2)

with the Lorenz condition

∂µW
µ = 0. (3)

Note that this condition is not a choice that we make, contrary to the case
of a massless spin-1 field. Rather, it is a necessary condition following from
the field equations themselves, as we saw in the previous tutorial.

The vector Wµ contains four components, and through the Lorenz con-
dition we can express one in terms of the others. This tells us that only three
components are independent. This has to be the case, because a spin-1 par-
ticle in Minkowski spacetime must have three degrees of freedom, associated
to the three possible values of the spin quantum number Sz = −1, 0, 1.

Massless spin-1 field. In the massless spin-1 case, the equations of mo-
tion do not imply any condition; the explicit computation in the previous
tutorial shows that the Lorenz condition originates from the mass term. On
the other hand, the action and the field equations are gauge invariant and so
we are free to choose a gauge. The choice of the gauge, as we shall see explic-
itly, eliminates two degrees of freedom, leaving us with only two propagating
degrees of freedom. This is the correct number because a massless spin-1
field in Minkowski spacetime must have only the polarizations Sz = −1, 1.1

1Actually, a massless particle with any spin n in Minkowski spacetime must have only
the two degrees of freedom Sz = −n, n.
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Consider the Maxwell equations

∂νF
µν = Jµ. (4)

In the Lorenz gauge, these equations reduce to

�Aµ = Jµ, ∂µA
µ = 0. (5)

As we know, a solution to these equations is

Aµ(x) = Aµ0 (x) +

∫
d4x′G(x− x′)Jµ(x′), (6)

where Aµ0 (x) is a solution to the homogeneous wave equations and

G(x− x′) =
1

(2π)4

∫
d4p

e−i p (x−x
′)

p2 + iε
(7)

is the Green’s function for the wave equation. A solution to the homogeneous
equation is

Aµ0 (x) = Nεµe−ikx, (8)

provided that kµk
µ = 0, with N normalization constant. The Lorenz gauge

tells us that

0 = ∂µA
µ(x) = ∂µA

µ
0 (x) +

∫
d4x′∂µG(x− x′)Jµ(x′)

= ∂µA
µ
0 (x)−

∫
d4x′∂µ′G(x− x′)Jµ(x′)

= ∂µA
µ
0 (x) +

∫
d4x′G(x− x′)∂µ′Jµ(x′)

= ∂µA
µ
0 (x) = Nεµ∂µeikx = iNεµkµeikx =⇒ eµkµ = 0, (9)

where we have used ∂µG(x − x′) = −∂µ′G(x − x′) due to the form of the
Green function, and we have integrated by parts. The boundary term is
zero because we assume that the current Jµ vanishes at infinity, and the
remaining term is zero because ∂µ′J

µ(x′) = 0, due to ∂µ∂νF
νµ ≡ 0 (∂µ∂ν is

symmetric, whereas F νµ is antisymmetric).
Now, the Lorenz gauge does not fix the gauge completely, because the

Maxwell equations (5) are still invariant under the following “residual” gauge
transformation,

Aµ → Aµ + ∂µλ, �λ = ∂µ∂
µλ = 0. (10)

This can be easily seen by applying the transformation,

�Aµ → � (Aµ + ∂µλ) = �Aµ + ∂µ�λ = �Aµ, (11)
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where we have used the commutation between partial derivatives. Hence,
solving (10), we have

λ = N1e
−ikx, (12)

provided that kµk
µ = 0 again, with N1 free constant parameter (this is

a gauge function, so we are not obliged to normalize; in other words, N1

is completely free). We can choose to have the same momentum k of the
solution (8) because we are free to make the gauge choice we like the most.

Then, the residual gauge freedom is

Aµ → Aµ + ∂µλ = Nεµe−ikx − i kµN1e
−ikx +

∫
d4x′G(x− x′)Jµ(x′), (13)

or equivalently

εµ → εµ − i
N1

N
kµ. (14)

This does not surprise, since kµkµ = 0 and then the term linear in kµ does
not spoil the Lorenz gauge,

0 = εµkµ − i
N1

N
kµkµ = εµkµ. (15)

We can then use the freedom to choose N1 in (14) to set to zero another
component of εµ. We then have only two independent components for the
polarization vector.

Commonly, one chooses the timelike component to be zero, and the rea-
son is the following. The gauge transformation (14) tells us that the com-
ponent of εµ parallel to kµ is not gauge-invariant—it does change according
to (14) itself. The orthogonal component is instead gauge-invariant. Now,
the momentum of the photon is

kµ = (|~k|,~k), (16)

therefore the gauge-dependent components of εµ are the timelike one and the
one parallel to ~k (the longitudinal). We can fix the residual gauge by setting
the timelike component ε0 to zero, choosing a residual gauge transformation
with the appropriate value of N1 in (14), such that

ε0 → ε0 − i
N1

N
k0 = 0 =⇒ N1 =

N ε0

i k0
. (17)

After having made this choice, the Lorenz gauge (9) becomes

0 = εµk
µ = ε0k

0 (= 0) + εik
i = εik

i = −~ε · ~k, (18)
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that is, the longitudinal component of εµ is also zero. We are left with the
two transverse components only, which are gauge-independent and therefore
physical. They are the two propagating degrees of freedom, corresponding
to Sz = −1, 1.

We can show why the transverse helicity states of the photon are Sz =
−1, 1, by performing a rotation in the transverse plane. If we choose a refer-
ence frame where the z axis is the longitudinal direction (we can always do
that without losing generality), this rotation is parametrized by the matrix

1 0 0 0
0 cos (θ) sin (θ) 0
0 − sin (θ) cos (θ) 0
0 0 0 1

 . (19)

We can consider only the non-trivial 2-dimensional part of it. The 2-
dimensional transverse part of the polarization vector transforms as(

ε′1
ε′2

)
=

(
cos (θ) ε1 + sin (θ) ε2
− sin (θ) ε1 + cos (θ) ε2

)
. (20)

We can now define the two complex helicity states as [Wei72, p. 255]—

S. Weinberg. Gravitation and Cosmology: Principles and Applications of
the General Theory of Relativity. July 1972, p. 688

ε± := ε1 ∓ iε2. (21)

Under the rotation, they transform as (please check)

ε′± = e±iθ ε±, (22)

which is the definition of plane waves having elicities ±1.
The whole analysis gets much simpler if one chooses the Coulomb gauge

~∇ · ~A = ∂iA
i = 0, rather than the Lorenz gauge. The Coulomb gauge

removes one longitudinal degree of freedom, and renders the equation for A0

nondynamical (please check). However, the Coulomb gauge is not Lorentz
invariant (it only involves the spatial components of Aµ), and therefore one
should also prove that the results hold in every inertial frame of reference.

Note that the source terms are not involved at all in the arguments above.
I included them to explicitly show that, indeed, they do not contribute.

2 Weak SU(2) isospin charges

We assign the weak isospin charges to the leptonic states in an analogous
way as we assign the electromagnetic charges to them. We remind the latter
case first.
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The electromagnetic charge. The electromagnetic current of the lepton
` is

JµEM = −e ψ̄` γµ ψ` = −e
(
ψ̄L
` γ

µ ψL
` + ψ̄R

` γ
µ ψR

`

)
. (23)

The continuity equation (which follows from ∂µ∂νF
µν = 0)

∂µJ
µ = 0 (24)

tells us that

∂0

∫
d3xJ0 = −

∫
d3x ∂iJ

i = −
∫
∂
d2xni J

i = 0, (25)

since we assume the current Jµ to vanish at the boundary ∂ of our region
of interest. Therefore, we have the conserved charge

QEM =

∫
d3xJ0 = −e

∫
d3x ψ̄` γ

0 ψ` = −e
∫
d3xψ†` ψ`. (26)

Inserting the Dirac fields for all the leptons in the theory and simplifying,
we get

QEM = −e
∑
`

2∑
r=1

∫
d3p

[
c†r,`(~p) cr,`(~p)− d

†
r,`(~p) dr,`(~p)

]
. (27)

Now recall that the creation and annihilation operators act on the vacuum
state as follows,

c†1,`(~p) |0〉 =
∣∣`−, R〉, c†2,`(~p) |0〉 =

∣∣`−, L〉 ,
d†1,`(~p) |0〉 =

∣∣`+, R〉, d†2,`(~p) |0〉 =
∣∣`+, L〉 .

Therefore the charge operator acts as

QEM

∣∣`−, R〉 = −e
∣∣`−, R〉, QEM

∣∣`−, L〉 = −e
∣∣`−, L〉 ,

QEM

∣∣`+, R〉 = +e
∣∣`+, R〉, QEM

∣∣`+, L〉 = +e
∣∣`+, L〉 ,

so it returns the electromagnetic charge of the state.
Note that the relative minus sign in (27) is crucial to obtain the correct

values of the charges.

The weak isospin charges. The isospin is a quantum number analogous
to the spin. They both characterize a quantum state under a SU(2) rotation.
However, the spin concerns rotations in spacetime, whereas the isospin con-
cerns abstract (or “internal”) rotations of the leptonic fields between them-
selves. For this reason, the structure of the isospin charge operators IWi is
the same as the spin ones Si.
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We define the currents [eq. (17.22) in M&S]

Jµ(x) = Jµ1 (x)− i Jµ2 (x), Jµ†(x) = 2Jµ1 (x) + i Jµ2 (x), (28)

where

Jµ1 (x) =
1

2

[
ψ̄L
ν`
γµ ψL

` + ψ̄L
` γ

µ ψL
ν`

]
, Jµ2 (x) =

i

2

[
ψ̄L
` γ

µ ψL
ν`
− ψ̄L

ν`
γµ ψL

`

]
.

(29)

ν` refers to the `-leptonic neutrino. Only the left-handed leptons and neu-
trinos are relevant, by assumption [Section 17.2 in M&S]. Jµ(x) and Jµ†(x)
define the ladder operators IW− and IW+ for the isospin, analogous to the
ladder operatoes S± = Sx ± iSy for the spin. They increase and decrease
the values of the isospin charges by 1.

Now we want to determine the isospin charges for the leptonic states,
analogously to what we did with the electromagnetic current. To do that, we
choose the basis where IW3 and

(
IW
)2

are simultaneously diagonalizable, as
one does in quantum mechanics for the spin. However, we are assuming that
the leptonic pairs (`, ν`) (lepton and corresponding leptonic neutrino) are

doublets under SU(2). Hence, we do not care about the eigenvalues of
(
IW
)2

because they are never changed in our context. Then, we only consider the
third isospin current Jµ3 (which leads to the charge IW3 , analogous to the
spin operator Sz). The isospin neutral current is

Jµ3 =
1

2

[
ψ̄L
ν`
γµ ψL

ν`
− ψ̄L

` γ
µ ψL

`

]
, (30)

The isospin conserved neutral charge is (please check)

IW3 =
1

2

∑
`

∫
d3p

{[
c†2,ν`(~p) c2,ν`(~p)− d

†
2,ν`

(~p) d2,ν`(~p)
]

−
[
c†2,`(~p) c2,`(~p)− d

†
2,`(~p) d2,`(~p)

]}
. (31)

We can then assign charges in the exact same way as in QED: the relative
signs in IW3 will determine them.

IW3
∣∣`−, L〉 = −1

2

∣∣`−, L〉, IW3 |ν`, L〉 = +
1

2
|ν`, L〉 ,

IW3
∣∣`+, L〉 = +

1

2

∣∣`+, L〉, IW3 |ν̄`, L〉 = −1

2
|ν̄`, L〉 .

All the right-handed particles have 0 isospin charge, by assumption (moti-
vated by the experience).

Note. In quantum mechanics, one considers one particle only, and the
spin operators change the spin of that particle. The isospin operators IW−
and IW+ raise and lower the isospin, and by doing so they change the particle
itself. You can think of this as the left-handed leptons being different quan-
tum states of a more general left-handed particle described by the doublet

field ΨL
` (x) =

(
ψL
ν`

(x)
ψL
` (x)

)
.
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