
Tutorial 14

FK8027 - Quantum Field Theory

Monday 18th February, 2019

Topics for today

• Brout–Englert–Higgs (BEH) mechanism for the massive real vector
bosons Wµ

1 ,W
µ
2 and the real vector bosons Wµ

3 , B
µ; diagonalization

to the mass eigenstates: the massive real vector boson Zµ and the
massless real vector boson Aµ (photon)

• Feynman rules for two first-order electroweak processes

• The discovery of the Higgs boson

• Mention of the hierarchy problem

Notation. All the fields depend on the spacetime coordinates, but we
shall omit them for readability.

1 BEH mechanism

The Lagrangian density for the Higgs isospinor doublet is1

LH = [DµΦ]†DµΦ− µ2Φ†Φ− λ
[
Φ†Φ

]2
, (1)

with µ2 < 0 and λ > 0. The Higgs isospinor doublet can be written

Φ =

(
φa
φb

)
=

1√
2

(
η1 + i η2
v + σ + iη3

)
(2)

where v =
√

2 〈0|φb |0〉 =
√
−µ2/λ > 0, σ is the real scalar Higgs field, and

ηi are the gauge-dependent (hence nonphysical) real scalar fields.2, We can
always find a gauge transformation setting the ηi to zero, called the “unitary
gauge” (Sec. 19.1 in M&S), i.e.,

Φ =
1√
2

(
0

v + σ

)
(3)

1Note that the fact that the Higgs isospinor is a doublet implies that it has isospin 1/2
(why?).

2They are three because the standard electroweak theory breaks SU(2), which has three
generators. The freedom to fix the ηi is exactly the freedom to choose a specific gauge
transformation in SU(2), which requires three parameters to be specified.

1



In the standard electroweak theory, the mass terms for the gauge vector
bosons arise from the interaction with the Higgs real scalar field. This
appears in the kinetic term for the Higgs isospinor doublet Φ,

[DµΦ]†DµΦ =
[(
∂µ + i

g

2
τ jWµ

j + ig′Y Bµ
)

Φ
]† (

∂µ + i
g

2
τjW

j
µ + ig′Y Bµ

)
Φ,

(4)

where τ j are the Pauli matrices, Y is the hypercharge operator, Wµ
j are the

components of the SU(2) gauge real vector bosons in the Pauli matrices’
basis, Bµ is the U(1)Y gauge real vector boson, g and g′ are SU(2) and
U(1)Y couplings.

Expanding (4) we get

[DµΦ]†DµΦ =
[(
∂µ + i

g

2
τ jWµ

j + ig′Y Bµ
)

Φ
]† (

∂µ + i
g

2
τjW

j
µ + ig′Y Bµ

)
Φ

= ∂µΦT

(
∂µ + i

g

2
τjW

j
µ + ig′Y †Bµ

)
Φ +

[(
∂µ + i

g

2
τ jWµ

j + ig′Y Bµ
)

Φ
]†
∂µΦ

+
(
−i
g

2
ΦTτ jWµ

j

)(
i
g

2
τjW

j
µΦ
)

+
(
−i
g

2
ΦTτ jWµ

j

)
(ig′Y BµΦ)

+
(
−ig′ΦTY †Bµ

) (
i
g

2
τjW

j
µΦ
)

+
(
−ig′ΦTY †Bµ

)
(ig′Y BµΦ) .

(5)

We remind that the Pauli matrices are self-adjoint. We do not need to con-
sider all these terms. The first line is not quadratic in the vector bosons,
hence it does not give rise to their mass terms. Rather, it describes interac-
tions between the Higgs field and the bosons. So we consider only the last
two lines, which we denote D. We can act with the hypercharge operator
on the Higgs field,

Y Φ =
1

2
Φ [M&S, between (18.39) and (18.40)]. (6)

In addition, the mass terms only involve the vacuum expectation value v,
and not the Higgs field σ (the terms involving σ are other interactions).
Therefore we can simplify D as follows,

D =
g2v2

8

(
0 1

){( Wµ
3 Wµ

1 − iWµ
2

Wµ
1 + iWµ

2 −Wµ
3

)(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)

+
g′

g

[(
Wµ

3 Wµ
1 − iWµ

2

Wµ
1 + iWµ

2 −Wµ
3

)(
Bµ 0

0 Bµ

)

+

(
Bµ 0

0 Bµ

)(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)]

+

(
g′

g

)2
(
Bµ 0

0 Bµ

)(
Bµ 0

0 Bµ

)}(
0

1

)
. (7)
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Performing the matrix products leads to

D =
g2v2

8

(
0 1

){(Wµ
i W

i
µ 0

0 Wµ
i W

i
µ

)
+

(
g′

g

)2
(
BµBµ 0

0 BµBµ

)

+2
g′

g

(
Wµ

3 Bµ Wµ
1 Bµ − iWµ

2 Bµ
Wµ

1 Bµ + iWµ
2 Bµ −Wµ

3 Bµ

)}(
0

1

)
. (8)

Lastly, we do the matrix product with the Higgs doublet

D =
g2v2

8

[
Wµ
i W

i
µ − 2

g′

g
Wµ

3 Bµ +

(
g′

g

)2

BµBµ

]
, (9)

and we get the mass terms for the vector bosons Wµ
1 and Wµ

2 .
We note that Wµ

3 and Bµ are not mass eigenstates of the Hamiltonian,
because there is a cross term coupling them (the one in the box). As ex-
plained in M&S [see eq. (17.45)], we can rotate the states by the weak mixing
angle (usually called the Weinberg angle) and get the two mass eigenstates
Zµ (electrically neutral massive vector boson) and Aµ (photon).

Wµ
3 = cos (θW)Zµ + sin (θW)Aµ, (10a)

Bµ = −sin (θW)Zµ + cos (θW)Aµ. (10b)

θW can be determined experimentally from electron–neutrino scattering or
Möller scattering.

We now plug (10) in (9), and get

D =
g2v2

8

{
Zµ Zµ

[
cos (θW) 2 + 2

g′

g
cos (θW) sin (θW) +

(
g′

g

)2

sin (θW) 2

]

+ ZµAµ

[
2 cos (θW) sin (θW) − 2

g′

g

(
cos (θW) 2 − sin (θW) 2

)
−2

(
g′

g

)2

sin (θW) cos (θW)

]

+AµAµ

[
sin (θW) 2 − 2

g′

g
sin (θW) cos (θW) +

(
g′

g

)2

cos (θW) 2

]}
.

(11)

The first term is a perfect square

cos (θW) 2 + 2
g′

g
cos (θW) sin (θW) +

(
g′

g

)2

sin (θW) 2 =

[
cos (θW) +

g′

g
sin (θW)

]2
.

(12)
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Now we use eq (17.47) in M&S,

g′

g
= tan (θW) , (13)

which is justified in M&S by the requirement that the field Aµ is the photon
and couples to matter as in QED. We get

D =
g2v2

8

{
Zµ Zµ

[
(cos (θW) 2 + sin (θW) 2)2

cos (θW) 2

]

+ 2ZµAµ

[
cos (θW) sin (θW) − cos (θW) sin (θW) +

sin (θW) 3

cos (θW)
− sin (θW) 3

cos (θW)

]
+AµAµ

[
sin (θW) 2 − 2sin (θW) 2 + sin (θW) 2

]}

=
g2v2

8cos (θW) 2
Zµ Zµ. (14)

Finally, we get a mass term for Zµ only, which means that the photon Aµ

is massless. Indeed, setting the Higgs hypercharge to 1/2 makes its electric
charge to vanish. In this way, U(1)EM is not broken and the photon stays
massless.

The mass of the bosons are

mW =
gv

2
, mZ =

mW

cos (θW)
,

sin (θW) 2 = 0.23122± 0.00015 [M&S, eq. (19.13c)].

2 Feynman rules for two first-order electroweak
processes

Contrary to QED, where every vertex gives a factor iqγµ (with q the appro-
priate charge), in electroweak theory we can have 18 basic vertices, listed
in Appendix B in M&S (see also the standard electroweak Lagrangian in
Sec. 19.1). We are going to compute explicitly the Feynman rules for two
vertices, namely (B.11) and (B.3).

(B.11) H → Z Z. This process has the following initial and final states,

|i〉 = h† ( ~k1) |0〉 , |f〉 = z†s1 ( ~k2) z
†
s2 ( ~k3) |0〉 , (15)

where we denote the Z operators with z, and the H operators with h. It is
determined by this part of the interaction Lagrangian density

L(1) =
vg2

4cos (θW) 2
ZαZ

ασ =⇒ H(1) = − vg2

4cos (θW) 2
ZαZ

ασ. (16)
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ζ∗s2β ( ~k2)

ζ∗s1α ( ~k3)

H
Z

Z

Figure 1: First-order electroweak process H → Z Z.

It corresponds to the Feynman diagram in Figure 1. The S-matrix reads

〈f |S(1) |i〉 = − (−i)vg2

4cos (θW) 2
〈f |
∫

d4x1 N [ZαZ
ασ] |i〉 , (17)

where N [·] is the normal ordering operator. Now we expand it in terms of
the fields

〈f |S(1) |i〉 =
ivg2

4cos (θW) 2
〈f |
∫

d4x1 N

[
·

1∑
r=−1

∫
d3p1

(2π)3/2
√
E ~p1

(
ζrα ( ~p1) zr ( ~p1) e−ip1x1 + ζ∗rα ( ~p1) z

†
r ( ~p1) eip1x1

)
·

1∑
r′=−1

∫
d3p2

(2π)3/2
√
E ~p2

(
ζαr′ ( ~p2) zr′ ( ~p2) e−ip2x1 + ζ∗αr′ ( ~p2) z

†
r′ ( ~p2) eip2x1

)
·

∫
d3p3

(2π)3/2
√
E ~p3

(
h ( ~p3) e−ip3x1 + h† ( ~p2) eip3x1

)]
|i〉 , (18)

where we indicate the Z polarization vectors with ζ. We have eight possible
terms. As we know from QED, only the terms annihilating the initial and
final states matter, i.e., only the product of the boxed terms does not vanish.
We are then left with

〈f |S(1) |i〉 =
ivg2

4cos (θW) 2(2π)9/2
√
E ~p1

E ~p2
E ~p3

1∑
r=−1

1∑
r′=−1

·∫
d3p1d

3p2d
3p3 ζ

∗r
α ( ~p1) ζ

∗α
r′ ( ~p2) 〈f | z†r ( ~p1) z

†
r′ ( ~p2)h ( ~p3) |i〉 ·∫

d4x1 eix1(p1+p2−p3). (19)
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We now work out the boxed term, containing the operators.

〈f | z†r ( ~p1) z
†
r′ ( ~p2)h ( ~p3) |i〉 = 〈0| zs1 ( ~k2) zs2 ( ~k3) z

†
r ( ~p1) z

†
r′ ( ~p2)h ( ~p3)h

† ( ~k1) |0〉 .
(20)

We want to have all the annihilators to the right and all the creators on the
left. We have to commute them, reminding the commutation relations,[

zr (~k) , z†s (~p)
]

= δrsδ(~k−~p). (21)

We start,

〈0| zs1 ( ~k2) zs2 ( ~k3) z
†
r ( ~p1) z

†
r′ ( ~p2) h ( ~p3)h

†
r1 ( ~k1) |0〉

= 〈0| zs1 ( ~k2) z
†
r ( ~p1) zs2 ( ~k3) + δs2rδ( ~k3− ~p1) z

†
r′ ( ~p2) h

† ( ~k1)h ( ~p3) + δ( ~p3− ~k1) |0〉 .
(22)

It is convenient to consider operators on the right first, because if they
annihilate the vacuum, the expression simplifies. In this case, the first term
in the second box annihilate the vacuum, so it is zero. We then have two
terms to consider, namely

〈0| zs1 ( ~k2) z
†
r ( ~p1) zs2 ( ~k3) z

†
r′ ( ~p2) |0〉 δ( ~p3− ~k1)

+ 〈0| zs1 ( ~k2) z
†
r′ ( ~p2) |0〉 δ( ~p3− ~k1)δs2rδ( ~k3− ~p1). (23)

The commutation of the operators in the boxes gives,

〈0| z†r ( ~p1) zs1 ( ~k2) + δs1rδ( ~k2− ~p1) z†r′ ( ~p2) zs2 ( ~k3) + δr′s2δ( ~k3− ~p2) |0〉 δ( ~p3− ~k1)

+ 〈0| z†r′ ( ~p2) zs1 ( ~k2) + δs1r′δ( ~k2− ~p2) |0〉 δ( ~p3− ~k1)δs2rδ( ~k3− ~p1). (24)

In the first line, in the second box only the term with the deltas survive.
Hence, of the two terms in the first box, again only the deltas survive. Same
for the second line. We then have,

δs1rδr′s2δ( ~p3− ~k1)δ( ~k2− ~p1)δ( ~k3− ~p2) + δs1r′δs2rδ( ~p3− ~k1)δ( ~k2− ~p2)δ( ~k3− ~p1). (25)

Note that these deltas produce the topologically equivalent Feynman dia-
grams, as in QED. In this case, the polarization indices and the momenta
~p1 and ~p2 are switched in the two terms, meaning that we can exchange the
two Z bosons in the Feynman diagram in Figure 1, since they are indistin-
guishable.

Now we can plug this expression in place of the box in (19). The sums
over the polarizations go away due to the deltas, as well as the three inte-
grals over the 3-momenta. Also, we integrate over x1 taking (2π)−4 from
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the prefactor, to get the Dirac delta that guarantees the conservation of
4-momentum.

〈f |S(1) |i〉 =
ivg2δ (k1 − k2 − k3)

4cos (θW) 2(2π)1/2
√
E ~k1

E ~k2
E ~k3

[
ζ∗s1α ( ~k3) ζ

∗α
s2 ( ~k2) + ζ∗s2α ( ~k2) ζ

∗α
s1 ( ~k3)

]
.

(26)

As anticipated, the two terms in the square parentheses are equal, so we can
sum them

〈f |S(1) |i〉 =
ivg2δ (k1 − k2 − k3)

2cos (θW) 2(2π)1/2
√
E ~k1

E ~k2
E ~k3

ζ∗s1α ( ~k3) ζ
∗α
s2 ( ~k2)

=
δ (k1 − k2 − k3)

(2π)1/2
√
E ~k1

E ~k2
E ~k3

ζ∗s1α ( ~k3) ζ
∗s2
β ( ~k2)

ivg2 ηαβ

4cos (θW) 2
. (27)

The conjugate polarization vectors tell us that we have two vector bosons in
the final state (same as a final photon in QED), whereas the box correspond
to the Feynman rule for this kind of vertex [compare with eq. (B.11) in
M&S].

(B.3) W W † → Z Z. First, note that

Wµ = W 1
µ − iW 2

µ = W+
µ , W †µ = W 1

µ + iW 2
µ = W−µ , (28)

i.e., Wµ has a positive electric charge and W †µ has a negative one. This can
be seen in the following way. Consider (17.27) in M&S

Q

e
= Y + IW3 , (29)

with Y hypercharge and IW3 the isospin charge (the normal style for the
operators, whereas the calligraphic style is used for the charges, i.e., the
eigenvalues of the operators). Now, the W bosons have Y = 0 by definition,
hence their normalized electric charge is equal to their isospin charge. By
definition, the isospin charge of the W -bosons is defined by the commutation
relations of the associated charges with the operator IW3 ,[

IW3 , IWi
]

= IWi IWi . (30)

From (28) we can define the currents J±µ and the associated charges IW± ,
as it is described in Section 17.2 in M&S, and we discussed in the previous
tutorials. Then, we know that[

IW3 , IW±
]

= ±IW± . (31)

This implies that W+
µ = Wµ has Q/e = IW3 = 1, and W−µ = W †µ has

Q/e = IW3 = −1. Therefore, these are the electric charge eigenstates.

7



We are going to use the electric charge eigenstates, rather than the mass
eigenstates. Hence, we now define their annihilation and creation operators
in terms of those of the mass eigenstates. This allows to write explicitly the
field expressions for W+

µ ,W
−
µ as well. The mass eigenstates are

W 1
α =

1∑
r=−1

∫
d3p1

(2π)3/2
√
E ~p1

(
ωrα ( ~p1)

1
wr ( ~p1) e−ip1x1 + ω∗rα ( ~p1)

1
w
†
r ( ~p1) eip1x1

)
,

(32a)

W 2
α =

1∑
r=−1

∫
d3p1

(2π)3/2
√
E ~p1

(
ωrα ( ~p1)

2
wr ( ~p1) e−ip1x1 + ω∗rα ( ~p1)

2
w
†
r ( ~p1) eip1x1

)
,

(32b)

where the polarization vectors are the same, since both field are spin-1 mas-
sive fields. The charge eigenstates (28) are

W+
α = Wα =

1∑
r=−1

∫
d3p1

(2π)3/2
√
E ~p1

[
ωrα ( ~p1)

(
1
wr ( ~p1)− i

2
wr ( ~p1)

)
e−ip1x1

+ω∗rα ( ~p1)

(
1
w
†
r ( ~p1)− i

2
w
†
r ( ~p1)

)
eip1x1

]
, (33a)

W−α = W †α =
1∑

r=−1

∫
d3p1

(2π)3/2
√
E ~p1

[
ωrα ( ~p1)

(
1
wr ( ~p1) + i

2
wr ( ~p1)

)
e−ip1x1

+ω∗rα ( ~p1)

(
1
w
†
r ( ~p1) + i

2
w
†
r ( ~p1)

)
eip1x1

]
. (33b)

Now we can define the complex operators

−
wr (~p) :=

1
wr (~p)− i

2
wr (~p) ,

+
wr (~p) :=

1
wr (~p) + i

2
wr (~p) , (34a)

and express a quantum state in their terms—we are going to do that with
the initial state of our process.

This process has the following initial and final states,

|i〉 =
−
w
†
r1 ( ~k1)

+
w
†
r2 ( ~k2) |0〉 , |f〉 = z†s1 ( ~k3) z

†
s2 ( ~k4) |0〉 . (35)

It corresponds to the Feynman diagram in Figure 2, and it is determined
by the following part of the interaction Lagrangian density,

L(1) = g2cos (θW) 2
(
WαW

†
βZ

αZβ −WβW
†βZαZ

α
)
, H(1) = −L(1).

(36)

The procedure is the same as the previous case. The S-matrix reads

〈f |S(1) |i〉 = −i
(
−g2cos (θW) 2

)
〈f |
∫

d4x1 N
[
WαW

†
βZ

αZβ −WβW
†βZαZ

α
]
|i〉 ,

(37)
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ωr1µ ( ~k1)

ωr2ν ( ~k2)

ζs1ρ ( ~k3)

ζs2σ ( ~k4)

W † Z

W Z

Figure 2: First-order electroweak process W W † → Z Z.

which, in terms of the fields, becomes

〈f |S(1) |i〉 = ig2cos (θW) 2 〈f |
∫

d4x1 ·N

[
1∑

r=−1

∫
d3p1

(2π)3/2
√
E ~p1

(
ωrα ( ~p1)

−
wr ( ~p1) e−ip1x1 + ω∗rα ( ~p1)

+
w
†
r ( ~p1) eip1x1

)
·

1∑
r′=−1

∫
d3p2

(2π)3/2
√
E ~p2

(
ω∗r

′
β ( ~p2)

−
w
†
r′ ( ~p2) eip2x1 + ωr

′
β ( ~p2)

+
wr′ ( ~p2) e−ip2x1

)
·

1∑
s=−1

∫
d3p3

(2π)3/2
√
E ~p3

(
ζαs ( ~p3) zs ( ~p3) e−ip3x1 + ζ∗αs ( ~p3) z

†
s ( ~p3) eip3x1

)
·

1∑
s′=−1

∫
d3p4

(2π)3/2
√
E ~p4

(
ζβs′ ( ~p4) zs′ ( ~p4) e−ip4x1 + ζ∗βs′ ( ~p4) z

†
s′ ( ~p4) eip4x1

)

−
1∑

r=−1

∫
d3p1

(2π)3/2
√
E ~p1

(
ωrβ ( ~p1)

−
wr ( ~p1) e−ip1x1 + ω∗rβ ( ~p1)

+
w
†
r ( ~p1) eip1x1

)
·

1∑
r′=−1

∫
d3p2

(2π)3/2
√
E ~p2

(
ω∗βr

′
( ~p2)

−
w
†
r′ ( ~p2) eip2x1 + ωβr

′
( ~p2)

+
wr′ ( ~p2) e−ip2x1

)
·

1∑
s=−1

∫
d3p3

(2π)3/2
√
E ~p3

(
ζsβ ( ~p3) zs ( ~p3) e−ip3x1 + ζ∗sβ ( ~p3) z

†
s ( ~p3) eip3x1

)
·

1∑
s′=−1

∫
d3p4

(2π)3/2
√
E ~p4

(
ζβs′ ( ~p4) zs′ ( ~p4) e−ip4x1 + ζ∗βs′ ( ~p4) z

†
s′ ( ~p4) eip4x1

)]
|i〉 .

(38)

We notice that the differences between the two terms are only the contrac-
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tions between the polarization vectors, and not the operators. Therefore,
the computation is simpler than it appears.

Only the term annihilating the initial and final state matter. It is the
product of the boxed terms

〈f |S(1) |i〉 =
ig2cos (θW) 2

(2π)6
√
E ~p1

E ~p2
E ~p3

E ~p4

1∑
r=−1

1∑
r′=−1

1∑
s=−1

1∑
s′=−1

·∫
d3p1d

3p2d
3p3d

3p4 〈f | z†s ( ~p3) z
†
s′ ( ~p4)

−
wr ( ~p1)

+
wr′ ( ~p2) |i〉 ·[

ωrα ( ~p1)ω
r′
β ( ~p2) ζ

∗α
s ( ~p3) ζ

∗β
s′ ( ~p4)− ωrβ ( ~p1)ω

r′β ( ~p2) ζ
∗
sα ( ~p3) ζ

∗α
s′ ( ~p4)

]
·∫

d4x1 e−ix1(p1+p2−p3−p4). (39)

As usual, we play with the operators,

〈0| zs1 ( ~k3) zs2 ( ~k4) z
†
s ( ~p3) z

†
s′ ( ~p4)

−
wr ( ~p1)

+
wr′ ( ~p2)

−
w
†
r1 ( ~k1)

+
w
†
r2 ( ~k2.) |0〉 (40)

The two operators in the box commute,

〈0| zs1 ( ~k3) zs2 ( ~k4) z
†
s ( ~p3) z

†
s′ ( ~p4)

−
wr ( ~p1)

−
w
†
r1 ( ~k1)

+
wr′ ( ~p2)

+
w
†
r2 ( ~k2) |0〉 . (41)

Now we switch the operators in the three boxes, getting

〈0| zs1 ( ~k3) z
†
s ( ~p3) zs2 ( ~k4) + δs2sδ( ~k4− ~p3) z

†
s′ ( ~p4) |0〉 δr1rδ( ~p1− ~k1) δr′r2δ( ~p2− ~k2).

(42)

We have now two terms,

〈0| zs1 ( ~k3) z
†
s ( ~p3) zs2 ( ~k4) z

†
s′ ( ~p4) |0〉 δr1rδ( ~p1− ~k1) δr′r2δ( ~p2− ~k2)

+ 〈0| zs1 ( ~k3) z
†
s′ ( ~p4) |0〉 δs2sδ( ~k4− ~p3) δr1rδ( ~p1− ~k1) δr′r2δ( ~p2− ~k2). (43)

When switching the operators in the box, only the terms with the deltas
survive, because the others always have an annihilator acting on the vacuum
state. Hence we finally get,

δs1sδ( ~k3− ~p3) δs2s′δ( ~k4− ~p4) δr1rδ( ~p1− ~k1) δr′r2δ( ~p2− ~k2)

+δs1s′δ( ~p4− ~k3) δs2sδ( ~k4− ~p3) δr1rδ( ~p1− ~k1) δr′r2δ( ~p2− ~k2). (44)

We insert these delta inside the box in (39), and we get

〈f |S(1) |i〉 =
ig2cos (θW) 2

(2π)2
√
E ~k1

E ~k2
E ~k3

E ~k4

δ [(k1 + k2)− (k3 + k4)] ·
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[
ωr1α ( ~k1)ω

r2
β ( ~k2)

(
ζ∗αs1 ( ~k3) ζ

∗β
s2 ( ~k4) + ζ∗αs2 ( ~k4) ζ

∗β
s1 ( ~k3)

)
−2ωr1β ( ~k1)ω

r2β ( ~k2) ζ
∗
s1α ( ~k3) ζ

∗α
s2 ( ~k4)

]
. (45)

This expression can be rewritten as,

〈f |S(1) |i〉 =
ig2cos (θW) 2

(2π)2
√
E ~k1

E ~k2
E ~k3

E ~k4

δ [(k1 + k2)− (k3 + k4)] ·

ωr1µ ( ~k1)ω
r2
ν ( ~k2) ζ

∗
s1ρ ( ~k3) ζ

∗
s2σ ( ~k4) [ηµρηνσ + ηµσηνρ − 2 ηµνηρσ]

=
1

(2π)2
√
E ~k1

E ~k2
E ~k3

E ~k4

δ [(k1 + k2)− (k3 + k4)] ·

ωr1µ ( ~k1)ω
r2
ν ( ~k2) ζ

∗
s1ρ ( ~k3) ζ

∗
s2σ ( ~k4) ·

ig2cos (θW) 2 [ηµρηνσ + ηµσηνρ − 2 ηµνηρσ] . (46)

Compare with eq. (B.3) in M&S.

3 The discovery of the Higgs boson

Quoting from the CERN website (click here):

On 4 July 2012, the ATLAS and CMS experiments at CERN’s
Large Hadron Collider announced they had each observed a new
particle in the mass region around 126 GeV. This particle is con-
sistent with the Higgs boson predicted by the Standard Model.
The Higgs boson, as proposed within the Standard Model, is the
simplest manifestation of the Brout–Englert–Higgs mechanism.
Other types of Higgs bosons are predicted by other theories that
go beyond the Standard Model.

On 8 October 2013 the Nobel prize in physics was awarded jointly
to François Englert and Peter Higgs “for the theoretical discovery
of a mechanism that contributes to our understanding of the
origin of mass of subatomic particles, and which recently was
confirmed through the discovery of the predicted fundamental
particle, by the ATLAS and CMS experiments at CERN’s Large
Hadron Collider.”

Unfortunately, Brout passed away before the award, and the Nobel prize
cannot be awarded posthumously. That is why he is not mentioned.

After that, many more measurements have been done at the LHC, and
all of them are consistent with the predictions of the standard electroweak
theory (and with QCD).
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4 Mention of the hierarchy problem

The mass of the Higgs boson gets large quantum corrections when consider-
ing high-order diagrams. These corrections are proportional to the squared
masses of the particles involved in the diagrams, the heaviest (known) one
being the top quark, with mt ∼ 173.5GeV. It is a common belief that the
Standard Model is incomplete, and that there should be other particles with
higher masses. Then, the Higgs’ mass would get corrections from them too.
Since gravity is not quantized yet, it is expected that new very massive parti-
cles should be produced at very high energies, close to the quantum gravity
energy scale, the Planck mass mPl ≈ 1.22 × 1019GeV. Then, they would
contribute to the Higgs’ mass through (enormous) quantum corrections.

Since the Higgs mass is ∼ 126GeV, the quantum corrections should
cancel between themselves with an incredibly high precision, which is not
inconsistent theoretically, but it is believed to be unnatural. This fine-tuning
problem is called the “hierarchy problem”. It asks why the Higgs’ mass is so
lower than the quantum gravity energy scale, since, in the Standard Model,
it gets corrections from any, known and unknown, particles in the model.

Note that, if the top quark was the highest mass particle in the theory—it
is the highest mass known particle in the Standard Model, but it is believed
there are heavier, still unknown, ones—then there would not be a hierarchy
problem.

Quoting from Section 22.6.1, 22.6.2 in M.D. Schwartz.,Quantum Field
Theory and the Standard Model, Cambridge University Press, 2014. ISBN:
9781107034730:

[...] indirect evidence for the mass of the Higgs boson came from
precision measurements of the W and Z masses and other elec-
troweak parameters. As will be shown in Chapter 31, these get
finite radiative corrections from loops involving quarks, most no-
tably the top quark, and the Higgs. The on-shell pole mass for
the top quark is mt ∼ 173.5GeV while its MS mass is mt ∼
165.6GeV [Particle Data Group (Beringer et al.), 2012]. This
5% difference comes from loops involving gluons. For these cal-
culations one should also use the MS mass for the Higgs bosons,
which differs from the experimentally measured pole mass due
primarily to the loop we just calculated involving the top quark.

[...]

Although the difference is finite, as M → ∞ [the mass of the
fermion in the diagrams, Ed.] the difference grows very large.
Indeed, the difference is sensitive to particles much heavier than
the mass of the scalar. Although the result is finite, heavy par-
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ticles are not decoupling. In this way, the scalar mass is UV
sensitive.

[...]

We saw that although the scalar mass gets quadratically diver-
gent corrections, for example from a fermion loop, these diver-
gences can be removed with counterterms. The resulting physical
pole mass must be determined from experiment as a renormal-
ization condition. It does not get corrections at any order in
perturbation theory, since by definition it is the physical value
of the mass. However, we saw that there can be a large differ-
ence between the pole mass and the MS mass for a scalar. In
particular, the difference in the squares of these masses is pro-
portional to the square of the mass of any fermion that couples
to the scalar. Since heavy fermions do not decouple, the scalar
mass is UV sensitive.

[...]

Fine-tuning is a sensitivity of physical observables (the pole mass)
to variation of parameters in the theory. That the Higgs mass
is so much smaller than the Planck scale (or some other scale
where the UV completion for the Standard Model might live) is
called the hierarchy problem. It is a problem with the theoret-
ical concept of naturalness, which says that all parameters in a
fundamental theory should be of order 1.
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