![]() |
Bimetric 3+1 toolkit for spherical symmetry
|
00001 /** 00002 * @file finiteDifferences.h 00003 * @brief Macros to emit various finite differences (e.g., for approximating 00004 derivatives, or for the Keisser-Oliger term). 00005 * @author Mikica Kocic 00006 * @copyright GNU General Public License (GPLv3). 00007 */ 00008 00009 ///////////////////////////////////////////////////////////////////////////////////////// 00010 /** @defgroup g11 Numerical Methods */ 00011 ///////////////////////////////////////////////////////////////////////////////////////// 00012 /*@{*/ 00013 #ifndef CFDS_ORDER 00014 /** The order of the centered final difference scheme. 00015 */ 00016 #define CFDS_ORDER 4 00017 #endif 00018 00019 /// @todo A run-time CFDS_ORDER? 00020 00021 ///////////////////////////////////////////////////////////////////////////////////////// 00022 // Macros to emit the spatial derivatives (centered in space) 00023 // 00024 // Convention: if f() denotes a function, then f_r() denotes a spatial derivative, 00025 // f_t() denotes a time derivative, f_rr() denotes a Real spatial derivative. 00026 // 00027 // @note The execution of the code where the spatial derivatives are 00028 // converted to differences in Mathematica (and then simplified) is around two times 00029 // faster than the code where the derivatives use the f_r and f_rr inline functions. 00030 00031 #if CFDS_ORDER == 2 // Second order central finite difference scheme 00032 00033 #define GF_r(f) ( 0.5 * ( f(m,n+1) - f(m,n-1) ) * inv_delta_r ) 00034 00035 #define GF_rr(f) ( ( f(m,n+1) - 2 * f(m,n) + f(m,n-1) ) * inv_delta_rr ) 00036 00037 #elif CFDS_ORDER == 4 // Fourth order central finite difference scheme 00038 00039 #define GF_r(f,m,n) ( ( - 1./12. * f(m,n+2) + 2./3. * f(m,n+1) \ 00040 - 2./3. * f(m,n-1) + 1./12. * f(m,n-2) ) * inv_delta_r ) 00041 00042 #define GF_rr(f,m,n) ( ( - 1./12.* f(m,n+2) + 4./3. * f(m,n+1) - 5./2. * f(m,n) \ 00043 + 4./3. * f(m,n-1) - 1./12. * f(m,n-2) ) * inv_delta_rr ) 00044 00045 #elif CFDS_ORDER == 6 // Sixth order central finite difference scheme 00046 00047 #define GF_r(f,m,n) \ 00048 ( ( 1./60. * f(m,n+3) - 9./60. * f(m,n+2) + 45./60. * f(m,n+1) \ 00049 - 45./60. * f(m,n-1) + 9./60. * f(m,n-2) - 1./60. * f(m,n-3) ) * inv_delta_r ) 00050 00051 #define GF_rr(f,m,n) \ 00052 ( ( 2./180. * f(m,n+3) - 27./180. * f(m,n+2) + 270./180. * f(m,n+1) \ 00053 - 490./180. * f(m,n) + 270./180. * f(m,n-1) - 27./180. * f(m,n-2) \ 00054 + 2./180. * f(m,n-3) ) * inv_delta_rr ) 00055 #else 00056 #error "CFDS_ORDER must be either 2, 4, or 6" 00057 #endif 00058 00059 ///////////////////////////////////////////////////////////////////////////////////////// 00060 00061 /** extrapolate_R is an optimized version of 4th order in accuracy extrapolation 00062 * using the 4th order Taylor expansion. 00063 */ 00064 #define extrapolate_R(f,m,n) GF(f,m,n) = \ 00065 - 7./48. * GF(f,m,n-8) + 209./144. * GF(f,m,n-7) - 103./16. * GF(f,m,n-6) \ 00066 + 793./48. * GF(f,m,n-5) - 3835./144. * GF(f,m,n-4) + 439./16. * GF(f,m,n-3) \ 00067 - 281./16. * GF(f,m,n-2) + 917./144. * GF(f,m,n-1) 00068 00069 /** extrapolate_lin is a linear extrapolation of the 4th order in accuracy 00070 * (used for derivatives). 00071 */ 00072 #define extrapolate_lin(f,m,n) GF(f,m,n) = \ 00073 1./4. * GF(f,m,n-5) - 4./3. * GF(f,m,n-4) + 3 * GF(f,m,n-3) \ 00074 - 4 * GF(f,m,n-2) + 37./12. * GF(f,m,n-1) 00075 00076 ///////////////////////////////////////////////////////////////////////////////////////// 00077 /** `KreissOligerTerm` is a macro that gives a Kreiss-Oliger dissipation term. 00078 * 00079 * Coefficients d_k at gridpoints for the centred finite-difference discretisation 00080 * of the derivative `partial_x^{2N}` (of the dissipative Kreiss-Oliger operator). 00081 * <pre> 00082 * --------------------------------------------- 00083 * N -4 -3 -2 -1 0 +1 +2 +3 +4 00084 * --------------------------------------------- 00085 * 1 +1 -2 +1 00086 * 2 -1 +4 -6 +4 -1 00087 * 3 +1 -6 +15 -20 +15 -6 +1 00088 * 4 -1 +8 -28 +56 -70 +56 -28 +8 -1 00089 * --------------------------------------------- </pre> 00090 * 00091 * Here, `N >= 1` is an integer and `D_h^{2N}` is a centered difference operator 00092 * approximating a partial spatial derivative of order `2N`, e.g., 00093 * a second- (`N = 1`) or fourth-order (`N = 2`) spatial derivative. 00094 * 00095 * To be subtracted from the evolution equation: 00096 * 00097 * `epsilon (-1)^N delta_t {delta_x}^{2N-1} D_h^{2N}` 00098 * 00099 * where: 00100 * 00101 * `D_h^{2N} = (2 delta_x)^{-2N} * ( sum_k d_k f[n+k] )` 00102 * 00103 * For `N = 2`, subtract from the evolution equation `u_t`: 00104 * 00105 * `dissip(f,dt) = epsilon 2^{-2N} * dt/delta_x * ( sum_k d_k f[n+k] )` 00106 */ 00107 #if CFDS_ORDER == 2 00108 #define KreissOligerTerm(f,dt) \ 00109 ( - ( GF(f,m,n-1) - 2* GF(f,m,n) + GF(f,m,n+1) ) * dissip_delta_r * (dt) ) 00110 #elif CFDS_ORDER == 4 00111 #define KreissOligerTerm(f,dt) \ 00112 ( ( GF(f,m,n-2) - 4* GF(f,m,n-1) + 6* GF(f,m,n) - 4* GF(f,m,n+1) + GF(f,m,n+2) ) \ 00113 * dissip_delta_r * (dt) ) 00114 #else 00115 #define KreissOligerTerm(f,dt) \ 00116 ( - ( GF(f,m,n-3) - 6* GF(f,m,n-2) + 15* GF(f,m,n-1) - 20* GF(f,m,n) + 15* GF(f,m,n+1) \ 00117 - 6* GF(f,m,n+2) + GF(f,m,n+3) ) * dissip_delta_r * (dt) ) 00118 #endif 00119 /*@}*/ 00120 /////////////////////////////////////////////////////////////////////////////////////////