Bimetric 3+1 toolkit for spherical symmetry
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
numMethods/finiteDifferences.h
Go to the documentation of this file.
00001 /**
00002  *  @file      finiteDifferences.h
00003  *  @brief     Macros to emit various finite differences (e.g., for approximating
00004                derivatives, or for the Keisser-Oliger term).
00005  *  @author    Mikica Kocic
00006  *  @copyright GNU General Public License (GPLv3).
00007  */
00008 
00009 /////////////////////////////////////////////////////////////////////////////////////////
00010 /** @defgroup g11 Numerical Methods                                                    */
00011 /////////////////////////////////////////////////////////////////////////////////////////
00012                                                                                    /*@{*/
00013 #ifndef CFDS_ORDER
00014     /** The order of the centered final difference scheme.
00015      */
00016     #define CFDS_ORDER 4
00017 #endif
00018 
00019 /// @todo A run-time CFDS_ORDER?
00020 
00021 /////////////////////////////////////////////////////////////////////////////////////////
00022 // Macros to emit the spatial derivatives (centered in space)
00023 //
00024 // Convention: if f() denotes a function, then f_r() denotes a spatial derivative,
00025 // f_t() denotes a time derivative, f_rr() denotes a Real spatial derivative.
00026 //
00027 // @note The execution of the code where the spatial derivatives are
00028 // converted to differences in Mathematica (and then simplified) is around two times
00029 // faster than the code where the derivatives use the f_r and f_rr inline functions.
00030 
00031 #if CFDS_ORDER == 2 // Second order central finite difference scheme
00032 
00033     #define GF_r(f)   ( 0.5 * ( f(m,n+1) - f(m,n-1) ) * inv_delta_r )
00034 
00035     #define GF_rr(f)  ( ( f(m,n+1) - 2 * f(m,n) + f(m,n-1) ) * inv_delta_rr )
00036 
00037 #elif CFDS_ORDER == 4 // Fourth order central finite difference scheme
00038 
00039     #define GF_r(f,m,n)  ( ( - 1./12. * f(m,n+2) + 2./3.  * f(m,n+1) \
00040                    - 2./3.  * f(m,n-1) + 1./12. * f(m,n-2) ) * inv_delta_r )
00041 
00042     #define GF_rr(f,m,n) ( ( - 1./12.* f(m,n+2) + 4./3.  * f(m,n+1) - 5./2. * f(m,n) \
00043                    + 4./3. * f(m,n-1) - 1./12. * f(m,n-2) ) * inv_delta_rr )
00044 
00045 #elif CFDS_ORDER == 6 // Sixth order central finite difference scheme
00046 
00047     #define GF_r(f,m,n) \
00048         ( ( 1./60. * f(m,n+3) - 9./60. * f(m,n+2) + 45./60. * f(m,n+1) \
00049            - 45./60. * f(m,n-1) + 9./60. * f(m,n-2) - 1./60. * f(m,n-3) ) * inv_delta_r )
00050 
00051     #define GF_rr(f,m,n) \
00052         ( ( 2./180. * f(m,n+3) - 27./180. * f(m,n+2) + 270./180. * f(m,n+1) \
00053                   - 490./180. * f(m,n) + 270./180. * f(m,n-1) - 27./180. * f(m,n-2) \
00054                   + 2./180. * f(m,n-3) ) * inv_delta_rr )
00055 #else
00056     #error "CFDS_ORDER must be either 2, 4, or 6"
00057 #endif
00058 
00059 /////////////////////////////////////////////////////////////////////////////////////////
00060 
00061 /** extrapolate_R is an optimized version of 4th order in accuracy extrapolation
00062  *  using the 4th order Taylor expansion.
00063  */
00064 #define extrapolate_R(f,m,n)  GF(f,m,n) = \
00065     -   7./48. * GF(f,m,n-8) +  209./144. * GF(f,m,n-7) - 103./16. * GF(f,m,n-6) \
00066     + 793./48. * GF(f,m,n-5) - 3835./144. * GF(f,m,n-4) + 439./16. * GF(f,m,n-3) \
00067     - 281./16. * GF(f,m,n-2) +  917./144. * GF(f,m,n-1)
00068 
00069 /** extrapolate_lin is a linear extrapolation of the 4th order in accuracy
00070  *  (used for derivatives).
00071  */
00072 #define extrapolate_lin(f,m,n)  GF(f,m,n) = \
00073     1./4. * GF(f,m,n-5) - 4./3. * GF(f,m,n-4) + 3 * GF(f,m,n-3) \
00074       - 4 * GF(f,m,n-2) + 37./12. * GF(f,m,n-1)
00075 
00076 /////////////////////////////////////////////////////////////////////////////////////////
00077     /** `KreissOligerTerm` is a macro that gives a Kreiss-Oliger dissipation term.
00078      *
00079      *  Coefficients d_k at gridpoints for the centred finite-difference discretisation
00080      *  of the derivative `partial_x^{2N}` (of the dissipative Kreiss-Oliger operator).
00081      *  <pre>
00082      *      ---------------------------------------------
00083      *       N  -4  -3   -2   -1    0   +1   +2  +3  +4
00084      *      ---------------------------------------------
00085      *       1                +1   -2   +1
00086      *       2           -1   +4   -6   +4   -1
00087      *       3      +1   -6  +15  -20  +15   -6  +1
00088      *       4  -1  +8  -28  +56  -70  +56  -28  +8  -1
00089      *      ---------------------------------------------  </pre>
00090      *
00091      *  Here, `N >= 1` is an integer and `D_h^{2N}` is a centered difference operator
00092      *  approximating a partial spatial derivative of order `2N`, e.g.,
00093      *  a second- (`N = 1`) or fourth-order (`N = 2`) spatial derivative.
00094      *
00095      *  To be subtracted from the evolution equation:
00096      *
00097      *      `epsilon (-1)^N  delta_t {delta_x}^{2N-1}  D_h^{2N}`
00098      *
00099      *  where:
00100      *
00101      *      `D_h^{2N} = (2 delta_x)^{-2N} * ( sum_k d_k f[n+k] )`
00102      *
00103      *  For `N = 2`, subtract from the evolution equation `u_t`:
00104      *
00105      *      `dissip(f,dt) = epsilon 2^{-2N} * dt/delta_x * ( sum_k d_k f[n+k] )`
00106      */
00107 #if CFDS_ORDER == 2
00108     #define KreissOligerTerm(f,dt) \
00109         ( - ( GF(f,m,n-1) - 2* GF(f,m,n) + GF(f,m,n+1) ) * dissip_delta_r * (dt) )
00110 #elif CFDS_ORDER == 4
00111     #define KreissOligerTerm(f,dt) \
00112         ( ( GF(f,m,n-2) - 4* GF(f,m,n-1) + 6* GF(f,m,n) - 4* GF(f,m,n+1) + GF(f,m,n+2) ) \
00113            * dissip_delta_r * (dt) )
00114 #else
00115     #define KreissOligerTerm(f,dt) \
00116         ( - ( GF(f,m,n-3) - 6* GF(f,m,n-2) + 15* GF(f,m,n-1) - 20* GF(f,m,n) + 15* GF(f,m,n+1) \
00117            - 6* GF(f,m,n+2) + GF(f,m,n+3) ) * dissip_delta_r * (dt) )
00118 #endif
00119                                                                                    /*@}*/
00120 /////////////////////////////////////////////////////////////////////////////////////////