Bimetric 3+1 toolkit for spherical symmetry
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
numMethods/finiteDifferences.h File Reference

Macros to emit various finite differences (e.g., for approximating derivatives, or for the Keisser-Oliger term). More...

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Defines

#define GF_r(f)   ( 0.5 * ( f(m,n+1) - f(m,n-1) ) * inv_delta_r )
#define GF_rr(f)   ( ( f(m,n+1) - 2 * f(m,n) + f(m,n-1) ) * inv_delta_rr )
#define extrapolate_R(f, m, n)
 extrapolate_R is an optimized version of 4th order in accuracy extrapolation using the 4th order Taylor expansion.
#define extrapolate_lin(f, m, n)
 extrapolate_lin is a linear extrapolation of the 4th order in accuracy (used for derivatives).
#define KreissOligerTerm(f, dt)   ( - ( GF(f,m,n-1) - 2* GF(f,m,n) + GF(f,m,n+1) ) * dissip_delta_r * (dt) )
 KreissOligerTerm is a macro that gives a Kreiss-Oliger dissipation term.

Detailed Description

Macros to emit various finite differences (e.g., for approximating derivatives, or for the Keisser-Oliger term).

Author:
Mikica Kocic

Definition in file finiteDifferences.h.