Bimetric 3+1 toolkit for spherical symmetry
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
grid/integrator.h
Go to the documentation of this file.
00001 /**
00002  *  @file      integrator.h
00003  *  @brief     Time evolution using the Method of Lines (MoL).
00004  *  @authors   Mikica Kocic, Wilkinson & Reinsch, Press et al
00005  *  @copyright GNU General Public License (GPLv3).
00006  */
00007 
00008 #include <csignal>
00009 
00010 /////////////////////////////////////////////////////////////////////////////////////////
00011 /** @defgroup g11 Numerical Methods                                                    */
00012 /////////////////////////////////////////////////////////////////////////////////////////
00013                                                                                    /*@{*/
00014 /** Time evolution using the Method of Lines (MoL).
00015  *
00016  *  The implemented methods are declared in MoL::knownMethods.
00017  *
00018  *  The integrator can evolve equations from several modules at the same time.
00019  *  All such modules should implement @ref IntegFace ans sign in to the integrator.
00020  *  The modules should also specify which grid functions are either evolved or
00021  *  kept constant by the integrator. (Those grid functions that are unknown to
00022  *  the integrator have to be maintained by the the modules themselves.)
00023  *
00024  *  The system provides the coordinates `t` and `r` as global grid functions
00025  *  (they are defined in @ref fld::sysIndex). The integrator keeps time `t` evolved and
00026  *  the spatial coordinate `r` constant.
00027  *
00028  *  The integrator handles process signals (e.g., Ctrl-C), which will cause
00029  *  a premature end of the integration.
00030  */
00031 class MoL : GridUser
00032 {
00033     std::vector<IntegFace*> eomList;       //!< Equations of motion that we evolve
00034     std::vector<Int> constantGF;           //!< Grid functions that are kept constant
00035     std::vector<fld::EvolvedBy> evolvedGF; //!< Grid functions that are integrated in time
00036 
00037     GridOutputWriter* output; //!< The integration output is directed here
00038 
00039     time_hr  rt_start;        //!< The realtime when the integration started
00040     Int      method;          //!< The integration method (Euler, ICN, MoL, ...)
00041     bool     running;         //!< Indicates if the integration should proceed
00042     Real     t_0;             //!< The initial `t`.
00043     Real     t_1;             //!< Integrate up to this `t`.
00044     Real     delta_t;         //!< The integration step
00045     Real     dissip;          //!< Kreiss-Oliger dissipation coefficient.
00046     Real     dissip_delta_r;  //!< `dissip / delta_r`
00047     Real     cur_t;           //!< Current time
00048 
00049     /** A list of the implemented integration methods.
00050      */
00051     static std::map<std::string,int> knownMethods;
00052 
00053     /** Keep the list of all created integrator objects (used by signalHandler).
00054      */
00055     static std::vector<MoL*> knownIntegrators;
00056 
00057     /** Forward the signal to all integrators (signaling them to quit).
00058      */
00059     static void signalHandler( int signum )
00060     {
00061         std::cout << std::endl;
00062         std::cerr << "*** Signal " << signum << " received" << std::endl;
00063 
00064         if( knownIntegrators.size () == 0 ) {
00065             exit( -1 );
00066         }
00067         for( auto i: knownIntegrators ) {
00068             i->quit ();
00069         }
00070     }
00071 
00072     /** Report the integration time and the estimated real-time to finish.
00073      */
00074     void reportIntegrationTime( Int m )
00075     {
00076         if ( mpiRank() > 1 ) {
00077             return; // only the first in rank can access the standard output
00078         }
00079 
00080         Real tnow = GF( fld::t, m, nGhost ); // current integration time
00081 
00082         auto elapsed = 1e-3 * std::chrono::duration_cast<std::chrono::milliseconds>
00083                 ( std::chrono::high_resolution_clock::now () - rt_start ).count ();
00084 
00085         auto rt_factor = elapsed / ( tnow - t_0 );  // real time/integration time
00086         auto rt_total = round( ( t_1 - t_0 ) * rt_factor ); // projected total time
00087         auto rt_left = round( ( t_1 - tnow ) * rt_factor ); // estimated time to cover
00088 
00089         std::cout << "    t = " << std::setw(6) << std::setprecision(2) << std::fixed
00090              << tnow << std::setw(-1) << std::setprecision(-1) << std::defaultfloat
00091              << ",   real = " << round( elapsed )
00092              << " s   (" << round( 100 * ( tnow - t_0 ) / ( t_1 - t_0 ) )
00093              << "% of " << rt_total
00094              << " s),   ETA " << rt_left << " s"
00095              << "                        \r";
00096         std::flush( std::cout );
00097     }
00098 
00099     /** Executed at the beginning of each integration step.
00100      */
00101     void integStep_Begin( Int m )
00102     {
00103         /// - Prepare the intermediate variables.
00104         ///
00105         for( auto eom: eomList ) {
00106             eom->integStep_Prepare( m );
00107         }
00108 
00109         /// - Exchange boundaries with the neighboring MPI ranks and/or fix the
00110         ///   left/right boundary conditions (depending on our MPI rank).
00111         ///   Quit if MPI has failed or we received abort message.
00112         ///
00113         if( gridDriver->mpiSize() > 1
00114             && ! gridDriver->exchangeBoundaries( m ) )
00115         {
00116             running = false;
00117             return;
00118         }
00119         if ( gridDriver->isFirstInRank () ) {
00120             for( auto eom: eomList ) {
00121                 eom->applyLeftBoundaryCondition( m );
00122             }
00123         }
00124         if ( gridDriver->isLastInRank () ) {
00125             for( auto eom: eomList ) {
00126                 eom->applyRightBoundaryCondition( m );
00127             }
00128         }
00129 
00130         /// - Calculate the RHS of time evolution equations.
00131         ///
00132         for( auto eom: eomList ) {
00133             eom->integStep_CalcEvolutionRHS( m );
00134         }
00135     }
00136 
00137     /** Executed at the end of each integration step.
00138      *  Returns `false` if we need to break the integration loop.
00139      */
00140     void integStep_End( Int m1, Int m )
00141     {
00142         /// - Finalize the integration step (e.g., doing diagnostic and post
00143         ///   processing of EoM like calculating the constraint violations).
00144         ///
00145         for( auto eom: eomList ) {
00146             eom->integStep_Finalize( m1, m );
00147         }
00148 
00149         /// - Wait on finishing the exchange of the boundaries (when using MPI).
00150         ///
00151         if ( ! gridDriver->waitExchange () ) {
00152             quit( m ); // Quit if MPI has failed
00153         }
00154     }
00155 
00156     /** Executed at each checkpoint.
00157      */
00158     void integStep_Checkpoint( Int m )
00159     {
00160         /// - Report the elapsed (both integration and real) time.
00161         ///
00162         reportIntegrationTime( m );
00163 
00164         /// - Check for eventual NaNs in the central/lower region of the grid.
00165         ///
00166         for( auto eom: eomList )
00167         {
00168             if ( ! eom->integStep_Diagnostics( m,
00169                             output->get_nFrom (), output->get_nTo () ) ) {
00170                 if ( running ) { // quit only once
00171                     quit( m );
00172                 }
00173             }
00174         }
00175 
00176         /// - Send the grid slice to the output.
00177         ///
00178         output->write( m, cur_t, delta_t );
00179     }
00180 
00181     /** Evolves the state variables using the FT scheme.
00182      */
00183     void integStep_Euler( Int mNext, Int m );
00184 
00185     /** Evolves the sate variables using the ICN averaging.
00186      */
00187     void integStep_AvgICN( Int mNext, Int mMid, Int m );
00188 
00189     /** Time evolution using the iterated Crank-Nicolson (ICN).
00190      */
00191     void integrate_AvgICN( int ICN_steps );
00192 
00193     /** Prepares the state variables for the intermediate MoL steps.
00194      */
00195     void integStep_MoLInit( Int m1, Int m, Real beta_delta_t );
00196 
00197     /** The intermediate method of lines (MoL) steps.
00198      */
00199     void integStep_MoL( Int m1, Int m, Real alpha );
00200 
00201     /** Time evolution using the method of lines (MoL).
00202      */
00203     void integrate_MoL( const MoLDescriptor& MoL );
00204 
00205 public:
00206 
00207     /** Constructs the MoL integrator as specified in the parameter file.
00208      */
00209     MoL( Parameters& params, UniformGrid& ug, GridOutputWriter& out )
00210         : GridUser( ug ), output( &out )
00211     {
00212         constantGF.reserve( 64 );
00213         evolvedGF.reserve( 128 );
00214 
00215         constantGF.push_back( fld::r ); // Radial coordinate is kept constant by default
00216 
00217         params.get( "integ.t_0",     t_0,      0.0 );
00218         params.get( "integ.t_1",     t_1,      1.0 );
00219         params.get( "integ.delta_t", delta_t,  0.1 );
00220         params.get( "integ.dissip",  dissip,   0.0 );
00221 
00222         std::string name = params.get( "integ.method", method, 0, knownMethods );
00223 
00224         // Fix the sign of delta_t
00225         //
00226         delta_t = t_1 < t_0 ? -abs(delta_t) : abs(delta_t);
00227 
00228         cur_t = t_0;  // The initial `t`
00229         running = false; // Stopped integration by default (will be enabled later on)
00230 
00231         // Calculate Kreiss-Oliger dissipation corrected delta r
00232         //
00233         dissip_delta_r = dissip / delta_r;
00234 
00235         // Expected output file data size (in bytes)
00236         //
00237         const Real sz = ( ( t_1 - t_0 ) / delta_t / output->get_mSkip() + 1 )
00238                            * output->recordSizeInBytes();
00239 
00240         slog << "Integrator:" << std::endl << std::endl
00241              << "    t_0 = " << t_0 << ",  t_1 = " << t_1 << ",  delta_t = " << delta_t
00242              << ",  method = " << name << " (#" << method << ")" << std::endl
00243              << "    Kreiss-Oliger dissipation = " << dissip << std::endl
00244              << "    Expected output data size = "
00245              << round( ( sz < 1e3 ? sz : sz < 1e6 ? sz/1e3 : sz/1e6 ) * 10 ) / 10
00246              << ( sz < 1e3 ? "" : sz < 1e6 ? " kB" : " MB" )
00247              << ",  GF count = " << output->GFCount ()
00248              << std::endl << std::endl;
00249 
00250         // Register to receive the signals from the system
00251         //
00252         knownIntegrators.push_back( this );
00253         if ( knownIntegrators.size () == 1 ) {
00254             signal( SIGINT, signalHandler );
00255             signal( SIGTERM, signalHandler );
00256         }
00257     }
00258 
00259     /** The destructor (here only responsible for cleaning up standard output).
00260      */
00261     ~MoL()
00262     {
00263         if( mpiRank() == 0 ) {
00264             std::cout << std::endl << std::endl;
00265         }
00266     }
00267 
00268     /** Moves the integration final time to the current time and marks
00269      *  the integration stopped.
00270      */
00271     void quit( Int m = -1 )
00272     {
00273         running = false; // Stop the integration
00274 
00275         t_1 = m < 0 ? cur_t : GF( fld::t, m, nGhost );
00276 
00277         if( mpiRank() == 0 ) std::cout << std::endl;
00278         slog << "*** Quitting at t = " << t_1 << std::endl;
00279 
00280         /// - In case of NaNs, signal the other MPI ranks that we are quitting.
00281         /// @todo Distribute the abort msg to all ranks instead of calling MPI_Abort.
00282         ///
00283         gridDriver->abortExchange ();
00284     }
00285 
00286     /** Adds the EoM to the list of all evolved subsystems.
00287      */
00288     void addToEvolution( IntegFace* eomInterface )
00289     {
00290         eomList.push_back( eomInterface );
00291     }
00292 
00293     /** The given fields will be kept constant by the integrator.
00294      */
00295     void keepConstant( const std::vector<Int>& gfs )
00296     {
00297         constantGF.insert( constantGF.end(), gfs.begin(), gfs.end() );
00298     }
00299 
00300     /** Add the given functions to the evolution list.
00301      */
00302     void keepEvolved( const std::vector<fld::EvolvedBy>& gfs )
00303     {
00304         evolvedGF.insert( evolvedGF.end(), gfs.begin(), gfs.end() );
00305     }
00306 
00307     /** Returns the time step.
00308      */
00309     Real dt () const {
00310         return delta_t;
00311     }
00312 
00313     /** Integrates the evolution equations in the given grid realm.
00314      */
00315     bool evolveEquations ()
00316     {
00317         #if 0
00318         if( delta_r != r(0,nGhost+1) - r(0,nGhost) ) {
00319             slog << "    Error: delta_r = " << delta_r << " != grid spacing = "
00320                  << r(0,nGhost+1) - r(0,nGhost)
00321                  << ", diff = " << delta_r - ( r(0,nGhost+1) - r(0,nGhost) )
00322                  << std::endl;
00323         }
00324         #endif
00325 
00326         output->writeHeader ();
00327 
00328         // Start timing the real-time
00329         rt_start = std::chrono::high_resolution_clock::now ();
00330 
00331         switch( method )
00332         {
00333             case 0:  integrate_AvgICN ( 0    );  break;
00334             case 1:  integrate_AvgICN ( 1    );  break;
00335             case 2:  integrate_AvgICN ( 2    );  break;
00336             case 3:  integrate_AvgICN ( 3    );  break;
00337             case 4:  integrate_MoL    ( ICN2 );  break;
00338             case 5:  integrate_MoL    ( ICN3 );  break;
00339             case 6:  integrate_MoL    ( RK1  );  break;
00340             case 7:  integrate_MoL    ( RK2  );  break;
00341             case 8:  integrate_MoL    ( RK3  );  break;
00342             case 9:  integrate_MoL    ( RK4  );  break;
00343         }
00344 
00345         return true;
00346     }
00347 };
00348 
00349 /////////////////////////////////////////////////////////////////////////////////////////
00350 // Definitions of MoL static members
00351 /////////////////////////////////////////////////////////////////////////////////////////
00352 
00353 std::vector<MoL*> MoL::knownIntegrators;
00354 
00355 std::map<std::string,int> MoL::knownMethods =
00356 {
00357     { "Euler",   0 },  { "avgICN2", 1 },
00358     { "avgICN3", 2 },  { "avgICN4", 3 },
00359     { "ICN2",    4 },  { "ICN3",    5 },
00360     { "RK1",     6 },  { "RK2",     7 },
00361     { "RK3",     8 },  { "RK4",     9 }
00362 };
00363 
00364 /////////////////////////////////////////////////////////////////////////////////////////
00365 // Definitions of MoL methods
00366 /////////////////////////////////////////////////////////////////////////////////////////
00367 
00368 void MoL::integStep_Euler( Int m1, Int m )
00369 {
00370     OMP_parallel_for( Int n = nGhost; n < nGhost + nLen; ++n )
00371     {
00372         GF( fld::t, m1, n ) = GF( fld::t, m, n ) + delta_t; // Evolve time
00373 
00374         for( auto f: constantGF )
00375         {
00376             GF( f, m1, n ) = GF( f, m, n );
00377         }
00378 
00379         for( auto e: evolvedGF )
00380         {
00381             GF( e.f, m1, n ) = GF( e.f, m, n ) + delta_t * GF( e.f_t, m, n )
00382                              - KreissOligerTerm( e.f, delta_t );
00383         }
00384     }
00385 }
00386 
00387 void MoL::integStep_AvgICN
00388 (
00389     Int m2,  // final time
00390     Int m1,  // middle time
00391     Int m    // initial time
00392     )
00393 {
00394     const Real half_dt = delta_t / 2;
00395 
00396     OMP_parallel_for( Int n = nGhost; n < nGhost + nLen; ++n )
00397     {
00398         GF( fld::t, m2, n ) = GF( fld::t, m, n ) + delta_t; // Evolve time
00399 
00400         for( auto f: constantGF )
00401         {
00402             GF( f, m2, n ) = GF( f, m, n );
00403         }
00404 
00405         for( auto e: evolvedGF )
00406         {
00407             GF( e.f, m2, n ) = GF( e.f, m, n )
00408                     + half_dt * ( GF( e.f_t, m1, n) + GF( e.f_t, m, n ) )
00409                     - KreissOligerTerm( e.f, delta_t );
00410         }
00411     }
00412 }
00413 
00414 /** Integrates the evolution equations using the iterated Crank-Nicolson (ICN) method.
00415  *  If ICN_steps == 0, then the method effectively becomes FTCS.
00416  *  See @cite Press:2007nrec, @cite Baumgarte:2010nr
00417  */
00418 void MoL::integrate_AvgICN( int ICN_steps )
00419 {
00420     slog << "Employing Method of Lines, Iterative Crank-Nicolson (avg)"
00421          << ", N = " << ICN_steps << std::endl << std::endl;
00422 
00423     cur_t = t_0;  // The initial `t`
00424     running = true; // Enable integration
00425 
00426     for( Int n = 0; n < nTotal; ++n ) {
00427         GF( fld::t, 0, n ) = t_0;
00428     }
00429 
00430     Int  mStep = 0; // The step counter (used to filter checkpoints)
00431     while( running && abs(cur_t) < abs(t_1) )
00432     {
00433         for( Int m = 0; running && m < mLen && abs(cur_t) < abs(t_1); ++m )
00434         {
00435             Int mNext = m + 1 >= mLen ? 0 : m + 1;
00436 
00437             /////////////////////////////////////////////////////////////////////////////
00438             // Predictor. Use FTCS for the first step.
00439             // Note that this will be the only step, if ICN_steps == 0.
00440             //
00441             Int m_1 = ICN_steps >= 1 ? mLen + 1 : mNext;
00442 
00443             integStep_Begin ( m      );   if( ! running ) break;
00444             integStep_Euler ( m_1, m );
00445             integStep_End   ( m_1, m );
00446 
00447             /////////////////////////////////////////////////////////////////////////////
00448             // Corrector iterations. There will be no iterations, if ICN_steps == 0.
00449             //
00450             for( int i = 0; running && i < ICN_steps; ++i )
00451             {
00452                 Int m_2 = ( i + 1 >= ICN_steps ? mNext : m_1 + 1 );
00453 
00454                 integStep_Begin  ( m_1         );   if( ! running ) break;
00455                 integStep_AvgICN ( m_2, m_1, m );
00456                 integStep_End    ( m_2, m_1    );
00457 
00458                 m_1 = m_2;
00459             }
00460 
00461             if( ( mStep++ % output->get_mSkip () ) == 0 ) {
00462                 integStep_Checkpoint( m );
00463             }
00464 
00465             cur_t = GF( fld::t, m, nGhost ); // The current time step
00466         }
00467     }
00468 }
00469 
00470 void MoL::integStep_MoL( Int m1, Int m, Real ac )
00471 {
00472     OMP_parallel_for( Int n = nGhost; n < nGhost + nLen; ++n )
00473     {
00474         GF( fld::t, m1, n ) += ac * GF( fld::t, m, n ); // Evolve time
00475 
00476         for( auto e: evolvedGF )
00477         {
00478             GF( e.f, m1, n ) += ac * GF( e.f, m, n );
00479         }
00480     }
00481 }
00482 
00483 void MoL::integStep_MoLInit( Int m1, Int m, Real bc_delta_t )
00484 {
00485     OMP_parallel_for( Int n = nGhost; n < nGhost + nLen; ++n )
00486     {
00487         // There is no explicit dependence on t, and t_t(m,n) = 1.
00488         // Also, r is constant along the `line`, i.e., r_t(m,n) = 0.
00489         //
00490         GF( fld::t, m1, n ) = bc_delta_t; // Evolve time
00491 
00492         for( auto f: constantGF )
00493         {
00494             GF( f, m1, n ) = GF( f, m, n );
00495         }
00496 
00497         for( auto e: evolvedGF )
00498         {
00499             GF( e.f, m1, n ) = bc_delta_t * GF( e.f_t, m, n )
00500                              - KreissOligerTerm( e.f, bc_delta_t );
00501         }
00502     }
00503 }
00504 
00505 /** The method of lines (MoL) separates the time integration from the rest of
00506  *  an evolution scheme. A `N`-step MoL method evolves the equation:
00507  *  <pre>
00508  *       partial_t Y = L[Y],  </pre>
00509  *
00510  *  using the following algorithm:
00511  *  <pre>
00512  *      Y^{(0)}   = Y^{m},
00513  *      Y^{(i+1)} = Sum_{j=0}^{i} ( alpha_{ij} Y^{(j)} ) +            <- integStep_MoL
00514  *                  Delta t beta_i L[Y^{(i)}],   for i = 0, ..., N-1, <- integStep_MoLInit
00515  *      Y^{m+1}   = Y^{(N)}.    </pre>
00516  *
00517  *  The variables `Y^{(i)}`, `i = 0, ..., N`, are intermediate.
00518  *
00519  *  The method is completely specified by `N`, and arrays alpha and beta
00520  *  in the structure MoLDescriptor.
00521  */
00522 void MoL::integrate_MoL( const MoLDescriptor& MoL )
00523 {
00524     slog << "Employing Method of Lines, " << MoL.name
00525          << ", N = " << MoL.N << std::endl << std::endl;
00526 
00527     cur_t = t_0;  // The initial `t`
00528     running = true; // Enable integration
00529 
00530     for( Int n = 0; n < nTotal; ++n ) {
00531         GF( fld::t, 0, n ) = t_0;
00532     }
00533 
00534     // The array mk[] contains redirections to grid rows (m's):
00535     //   mk[0]                   points to Y^{m}   == Y^{(0)},
00536     //   mk[1], ..., mk[Mol.N-1] point to the intermediate Y^{(1)}, ..., Y^{(N-1)},
00537     //   mk[MoL.N]               points to Y^{m+1} == Y^{(N)}.
00538     //
00539     int mk[ 10 ]; // int mk[ MoL.N + 1 ]; // Note that N is at most 8
00540     for( int i = 0; i <= MoL.N; ++i ) {
00541         mk[i] = mLen + i;
00542     }
00543 
00544     Int  mStep = 0; // The step counter
00545     while( running && abs(cur_t) < abs(t_1) )
00546     {
00547         for( Int m = 0; running && m < mLen && abs(cur_t) < abs(t_1); ++m )
00548         {
00549             mk[0] = m; // Y^{(m)}
00550             mk[MoL.N] = m + 1 >= mLen ? 0 : m + 1; // Y^{(m+1)}
00551 
00552             for( int i = 0; running && i < MoL.N; ++i )
00553             {
00554                 integStep_Begin( mk[i] );   if( ! running ) break;
00555 
00556                 integStep_MoLInit( mk[i+1], mk[i], MoL.beta[i] * delta_t );
00557 
00558                 for( int j = 0; j <= i; j++ ) {
00559                     integStep_MoL( mk[i+1], mk[j], MoL.alpha[i][j] );
00560                 }
00561 
00562                 integStep_End( mk[i+1], mk[i] );
00563             }
00564 
00565             if( ( mStep++ % output->get_mSkip () ) == 0 ) {
00566                 integStep_Checkpoint( m );
00567             }
00568 
00569             cur_t = GF( fld::t, m, nGhost ); // The current time step
00570         }
00571     }
00572 }
00573                                                                                    /*@}*/
00574 /////////////////////////////////////////////////////////////////////////////////////////